Te precipitates are one of main defects that form during the cooling process of as–grown CdTe crystals. Many factors such as the kinetic properties of intrinsic point defects (vacancy, interstitial, and antisites), internal stresses around the precipitates associated with the lattice mismatch between the precipitate and matrix, thermal stresses due to temperature gradients, extended defects (dislocations, twin and grain boundaries), non-stoichiometric composition, and the thermal treatment processing might all affect the formation and growth/dissolution of Te precipitates. A good understanding of these effects on Te precipitate evolution kinetics is technically important in order to optimize the material process and obtain high quality crystals. This work aims to develop a phase-field model for investigating the evolution of a Te-precipitate in a Te-rich CdTe crystal under cooling. Cd vacancies and Te interstitials are assumed to be the diffusion species in the system. We also assume that the system is in two phase equilibrium (matrix CdTe and liquid Cd-Te droplet) at high temperatures and three phase equilibrium (matrix CdTe, Te-precipitate, and void) at low temperatures. With the thermodynamic and kinetic properties from experimental phase diagrams and thermodynamic calculations, the effect of Te and vacancy mobility, cooling rates and internal stresses on Te-precipitate and void evolution kinetics are investigated.
Revised: September 24, 2009 |
Published: May 15, 2009
Citation
Hu S.Y., and C.H. Henager. 2009.Phase-field Simulations of Te-Precipitate Morphology and Evolution Kinetics in Te-Rich CdTe Crystals.Journal of Crystal Growth 311, no. 11:3184-3194.PNNL-SA-63401.