February 7, 2026
Journal Article
A new family of ternary intermetallic compounds with dualistic atomic ordering – The ZIP phases
Abstract
A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e., they form two structural variants: one with the fcc diamond cubic structure (space group Fd 3 ¯ m) and one with the hexagonal structure (space group P63/mmc). They are also characterized by metallic behavior, ionic bonding, and atomic zigzagging. Powder metallurgical routes involving pressure-assisted densification are adopted to demonstrate ZIP phase synthesis in the Nb-Si-Ni, Nb-Si-Co, Ta-Si-Ni, V-Si-Ni, and Nb-Si-Fe ternary systems. Crucially, reactive hot pressing is capable of producing high-purity ZIP phase materials after the judicious, elemental system-specific optimization of the processing route. Synthesis of phase-pure materials – demonstrated in the Nb-Si-Ni ternary system by the synthesis of quasi phase-pure Nb3SiNi2 and Ni3SiNb2 ZIP phase-based materials – is a steppingstone to the prospective exploitation of the ZIP phases. Characterization of Nb3SiNi2 and Ni3SiNb2 involves crystal structure determination, spatially resolved chemical analysis, and determination of select thermal, electrical, magnetic, mechanical, and physical properties. Density functional theory is used to assess the stability of Nb3SiNi2 & Ni3SiNb2 and derivative binary compounds at different temperatures, also exploring the exfoliation of these two ZIP phases along specific surfaces to produce 2D derivatives.Published: February 7, 2026