September 12, 2025
Journal Article

Near Resonance between the Shelf Ocean and Semidiurnal Atmospheric Tidal Winds

Abstract

This manuscript illustrates the resonance between continental shelf oceans and the semidiurnal atmospheric tidal wind, explaining $O(10^{-2})$ m semidiurnal sea surface height (SSH) variations in detided datasets. The resonance, similar to amplification of semidiurnal oceanic tides on the gentle and wide shelf, results in pronounced, offshore-attenuated standing waves on the shelf which is driven by the cross-shore pressure gradient force, Coriolis force, and the rotary wind stress. Observations and numerical results from the Texas-Louisiana shelf confirm this mechanism, where a significant presence of the semidiurnal tidal wind couples with $O(10^{-1})$ \ums\ ocean currents, influencing SSH distribution and sustaining the wave structure. The consistency of the interaction and momentum budgets with the analytical solution suggests the robustness of the semidiurnal atmospheric tidal wind interacting with the shelf ocean. Notably, these findings suggest that similar resonances could occur on other gentle shelves known for enhancing semidiurnal oceanic tides and contribute 3 to 10\% of the wind work.

Published: September 12, 2025

Citation

Hsu F., D. Schlichting, R. Shearman, J.D. Nash, and R.D. Hetland. 2025. Near Resonance between the Shelf Ocean and Semidiurnal Atmospheric Tidal Winds. Journal of Physical Oceanography 55, no. 4:397-413. PNNL-SA-207827. doi:10.1175/JPO-D-24-0083.1