December 7, 2011
Journal Article

Natural Abundance 43Ca NMR as a Tool for Exploring Calcium Biomineralization: Renal Stone Formation and Growth

Abstract

Renal stone diseases are a global health issue with little effective therapeutic recourse aside from surgery and shock-wave lithotripsy, primarily because the fundamental chemical mechanisms behind calcium biomineralization are poorly understood. In this work, we show that natural abundance 43Ca NMR at 21.1 T is an effective means to probe the molecular-level Ca2+ structure in oxalate-based kidney stones. We find that the 43Ca NMR resonance of an authentic oxalate-based kidney stone cannot be explained by a single pure phase of any common Ca2+-bearing stone mineral. Combined with XRD results, our findings suggest an altered calcium oxalate monohydrate-like Ca2+ coordination environment for some fraction of Ca2+ in our sample. The evidence is consistent with existing literature hypothesizing that nonoxalate organic material interacts directly with Ca2+ at stone surfaces and is the primary driver of renal stone aggregation and growth. Our findings show that 43Ca NMR spectroscopy may provide unique and crucial insight into the fundamental chemistry of kidney stone formation, growth, and the role organic molecules play in these processes.

Revised: September 29, 2015 | Published: December 7, 2011

Citation

Bowers G.M., and R.J. Kirkpatrick. 2011. Natural Abundance 43Ca NMR as a Tool for Exploring Calcium Biomineralization: Renal Stone Formation and Growth. Crystal Growth & Design 11, no. 12:5188-5191. doi:10.1021/cg201227f