Room temperature Ti ion implantation and subsequent thermal annealing in N2 ambience have been used to fabricate the anatase and rutile structured N-doped TiO2 particles embedded in the surface region of fused silica. The Stopping and Range of Ions in Matter (SRIM) code simulation indicates a Gaussian distribution of implanted Ti, with a projected range of 74.4 nm and straggling of 16.5 nm. However, Rutherford backscattering spectrometry and transmission electron microscopy results show a much shallower distribution peaked at ~ 30 nm. Significant sputtering loss of silica substrates has occurred during implantation. Nanoparticles with size of 10-20 nm in diameter have formed after implantation. X-ray photoelectron spectroscopy indicates the coexistence of TiO2 and metallic Ti in the as-implanted samples. Metallic Ti is oxidized to anatase TiO2 after annealing at 600ºC, while rutile TiO2 forms by phase transformation after annealing at 900ºC. At the same time, N-Ti-O, Ti-O-N and/or Ti-N-O linkages have formed in the lattice of TiO2. A red shift of 0.34 eV in the absorption edge is obtained for N-doped anatase TiO2 after annealing at 600 ºC for 6 h. The absorbance increases in the ultraviolet and visible waveband.
Revised: October 7, 2011 |
Published: May 1, 2010
Citation
Xiang X., M. Chen, Y. Ju, X.T. Zu, L.M. Wang, and Y. Zhang. 2010.N-TiO2 nanoparticles embedded in silica prepared by Ti ion implantation and annealing in nitrogen.Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 268, no. 9:1440-1445.PNNL-SA-70347.