August 3, 2020
Journal Article

Metabolomic Profiling of Wild-type and Mutant Soybean Root Nodules Using Laser-ablation Electrospray Ionization Mass Spectrometry Reveals Altered Metabolism

Abstract

The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is complex. In order to document the changes in plant metabolism due to the symbiosis, we utilized laser ablation electrospray ionization mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have altered nodule ultrastructure. Results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid (JA), correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+) and ineffective (nifH mutant, fix-) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. This study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.

Revised: February 12, 2021 | Published: August 3, 2020

Citation

Agtuca B.J., S.A. Stopka, S. Evans, L.Z. Samarah, Y. Liu, D. Xu, and M. Stacey, et al. 2020. Metabolomic Profiling of Wild-type and Mutant Soybean Root Nodules Using Laser-ablation Electrospray Ionization Mass Spectrometry Reveals Altered Metabolism. The Plant Journal 103, no. 5:1937-1958. PNNL-SA-144662. doi:10.1111/tpj.14815