Rapid advances in the synthesis of superparamagnetic nanoparticles has stimulated widespread interest in their use as contrast agents for visualizing biological processes with Magnetic Resonance Imaging (MRI). With this approach, strong particle magnetism alters the MRI signal from nearby water protons and this, in turn, affects observed image contrast. Magnetic particle detection with MRI is therefore indirect and suffers from several associated problems, including poor quantification and tissuedependent performance. Magnetic Particle Imaging (MPI) overcomes these by directly measuring the amount of superparamagnetic material at each location. Mass sensitivity, spatial resolution, and imaging time is also comparable to or better than that achieved with MRI. Moreover, MPI is relatively inexpensive, meets all current safety guidelines, is quantitative, provides unambiguous contrast with tissue-independent performance, and can detect lower particle concentrations. Here, the basic principles behind MPI are described, factors affecting sensitivity and resolution are discussed, and potential utility for biomedical use is examined.
Revised: September 7, 2010 |
Published: February 1, 2010
Citation
Minard K.R. 2010.Magnetic Particle Imaging. In Encyclopedia of Spectroscopy and Spectrometry 2nd edition. 1426-1434. Amsterdam:Elsevier.PNNL-SA-63892.