March 22, 2015
Conference Paper

Investigations of non-linear polymers as high performance lubricant additives

Abstract

Off-the-shelf available engine oils contain an assortment of additives that increase the performance of base oils and maximize the overall efficiency of the machine. With ever increasing requirements for fuel efficiency, the demand for novel materials that outperform older generations is also on the rise. One approach towards increasing overall efficiency is to reduce internal friction and wear in an engine. From an additive approach, this is typically achieved by altering the bulk oil’s viscosity at high temperatures via polymers. In general, the hydrodynamic volume of polymers increase (expand) at elevated temperatures and decrease (contract/deflate) with declining temperatures and this effect is enhanced be carefully designing specific structures and architectures. The natural thinning tendency of base oil with increasing temperatures is in part mitigated by the expansion of the macromolecules added, and the overall effect is decreasing the viscosity losses at high temperatures. Traditional polymer architectures vary from linear to dendritic, where linear polymers of the same chemical composition and molecular weight to its dendritic counterpart will undergo a more significant free volume change in solution with regards to temperature changes. This advantage has been exploited in the literature towards the production of viscosity modifiers. However, one major disadvantage of linear polymers is degradation due to mechanical shear forces and high temperatures causing a shorter additive lifetime. Dendrimers on the other hand are known to demonstrate superior robustness to shear degradation when compared to their respective linear counterparts. An additional advantage of the dendritic architecture is the ability to tailor the peripheral end-groups towards influencing polymer-solvent and/or polymer-surface interactions. Comb-burst hyperbranched polymers are a hybrid of the aforementioned architectures and provide several compromises between the traditional structures including the tailoring of peripheral functional groups, conformational flexibility via lipophilic long chain linkers, and a readily available synthesis amenable to scale-up. In the following communication, the synthesis of an aryl comb-burst hyperbranched polymer will be described. Some of the challenges we had to overcome are being highlighted, such as efforts towards increasing lipophilicity of the molecule via changes in saturated carbon content, controlling polymerization conditions to control average molecular weight and degree of branching. In addition, trends in viscosity modification of the bulk oil and wear/friction studies will be discussed.

Revised: January 27, 2016 | Published: March 22, 2015

Citation

Robinson J.W., P. Bhattacharya, J. Qu, J.T. Bays, and L. Cosimbescu. 2015. Investigations of non-linear polymers as high performance lubricant additives. In Proceedings of the 249th ACS National Meeting and Exhibition, March 22-26, 2015, Denver, Colorado. Energy & Fuels Preprints, 60, 185. Washington, District Of Columbia:American Chemical Society. PNNL-SA-106487.