High-accuracy, direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel, particularly the Pu isotopes, is a well-documented, but still unmet challenge in international safeguards. As nuclear fuel cycles propagate around the globe, the need for improved materials accountancy techniques for irradiated light-water reactor fuel will only increase (e.g. for shipper-receiver verification at interim or permanent storage, or at the head end of a reprocessing plant). This modeling study investigates the use of delayed gamma rays from fission-product nuclei to directly measure the relative concentrations of U-235, Pu-239, and Pu-241 in spent fuel assemblies. The method is based on the unique distribution of fission-product nuclei produced from fission in each of these fissile isotopes. Fission is stimulated in the assembly with a beam of interrogating neutrons and the measured distributions of the short-lived fission products from the unknown sample are then fit with a linear combination of the known fission-product yield curves from pure U-235, Pu-239, and Pu-241 to determine the original proportions of these fissile isotopes. Modeling approaches for the intense gamma-ray background promulgated by the long-lived fission-product inventory, and the high-energy gamma-ray signatures emitted by short-lived fission products from induced fission are described. Results for the simulated assay of simplified individual fuel elements ranging from fresh to 60 GWd/MTU burnup are used to demonstrate the utility of the modeling methods and provide preliminary viability data for the technique. A limited set of benchmarking measurements, and additional work needed to more realistically assess the potential of the High-Energy Delayed Gamma Spectroscopy (HEDGS) technique are described.
Revised: October 7, 2010 |
Published: October 7, 2009
Citation
Campbell L.W., L.E. Smith, A.C. Misner, and J.J. Ressler. 2009.High-Energy Delayed Gamma Spectroscopy for Spent Nuclear Fuel Assay. In Proceedings of the 50th Annual Meeting of the Institute of Nuclear Materials Management. Deerfield, Illinois:Institute of Nuclear Materials Management.PNNL-SA-66814.