For centuries, flow visualization has been the art of making fluid motion visible in physical and biological
systems. Although such flow patterns can be, in principle, described by the Navier-Stokes equations,
extracting the velocity and pressure fields directly from the images is challenging. We addressed this
problem by developing hidden fluid mechanics (HFM), a physics-informed deep-learning framework capable of encoding the Navier-Stokes equations into the neural networks while being agnostic to the geometry or the initial and boundary conditions. We demonstrate HFM for several physical and biomedical problems by extracting quantitative information for which direct measurements may not be possible.
Revised: June 2, 2020 |
Published: February 28, 2020
Citation
Raissi M., A. Yazdani, and G.E. Karniadakis. 2020.Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations.Science 367, no. 6481:1026–1030.PNNL-SA-152906.doi:10.1126/science.aaw4741