July 25, 2012
Journal Article

Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

Abstract

A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm-2 (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm-3 (1.5 %) and 0.22 gm-2 (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

Revised: August 21, 2012 | Published: July 25, 2012

Citation

Gantt B., J. Xu, N. Meskhidze, Y. Zhang, A. Nenes, S.J. Ghan, and X. Liu, et al. 2012. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing. Atmospheric Chemistry and Physics 12, no. 14:6555–6563. PNNL-SA-86189. doi:10.5194/acp-12-6555-2012