May 13, 2015
Journal Article

Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

Abstract

Activation of the oxo bond of uranyl, UO22+, was achieved by collision induced dissociation (CID) of UO2(N3)Cl2– in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2– was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2– resulted in the loss of N2 to form UO(NO)Cl2–, in which the “inert” uranyl oxo bond has been activated. Formation of UO2Cl2– via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2– complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2– complex shows that the side-on bonded NO moiety can be considered as NO3–, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2– to form UO(NO)Cl2– and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2– and UO2Cl2–. The observation of UO2Cl2– during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

Revised: August 31, 2015 | Published: May 13, 2015

Citation

Gong Y., W.A. De Jong, and J.K. Gibson. 2015. Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide. Journal of the American Chemical Society 137, no. 18:5911-5915. doi:10.1021/jacs.5b02420