The accuracy of a power system dynamic model is essential to its secure and efficient operation. Lower confidence in model accuracy usually leads to conservative operation and lowers asset usage. To improve model accuracy, this paper proposes an expectation-maximization (EM) method to calibrate the synchronous machine model using phasor measurement unit (PMU) data. First, an extended Kalman filter (EKF) is applied to estimate the dynamic states using measurement data. Then, the parameters are calculated based on the estimated states using maximum likelihood estimation (MLE) method. The EM method iterates over the preceding two steps to improve estimation accuracy. The proposed EM method’s performance is evaluated using a single-machine infinite bus system and compared with a method where both state and parameters are estimated using an EKF method. Sensitivity studies of the parameter calibration using EM method are also presented to show the robustness of the proposed method for different levels of measurement noise and initial parameter uncertainty.
Revised: March 20, 2014 |
Published: July 21, 2013
Citation
Meng D., N. Zhou, S. Lu, and G. Lin. 2013.An Expectation-Maximization Method for Calibrating Synchronous Machine Models. In IEEE Power & Energy Society General Meeting, July 21-25, 2013, Vancouver, BC, 1-5. Piscataway, New Jersey:IEEE.PNNL-SA-92499.doi:10.1109/PESMG.2013.6672950