June 2, 2010
Journal Article

Endogenous 3, 4- Dihydroxyphenylalanine and Dopaquinone Modifications on Protein Tyrosine: links to mitochondrially derived oxidative stress via hydroxyl radical

Abstract

Oxidative modifications of protein tyrosines have been implicated in multiple human diseases. Among these modifications, elevations in levels of 3, 4-dihydroxyphenylalanine (DOPA), a major product of hydroxyl radical addition to tyrosine, has been observed in a number of pathologies. Here we report the first global proteome survey of endogenous site-specific modifications, i.e, DOPA and its further oxidation product dopaquinone (DQ) in mouse brain and heart tissues. Results from LC-MS/MS analyses included 203 and 71 DOPA-modified tyrosine sites identified from brain and heart, respectively, with a false discovery rate of ~1%; while only a few nitrotyrosine containing peptides, a more commonly studied marker of oxidative stress, were detectable, suggesting the much higher abundance for DOPA modification as compared with tyrosine nitration. Moreover, 57 and 29 DQ modified peptides were observed from brain and heart, respectively; nearly half of these peptides were also observed with DOPA modification on the same sites. For both tissues, these modifications are preferentially found in mitochondrial proteins with metal-binding properties, consistent with metal catalyzed hydroxyl radical formation from mitochondrial superoxide and hydrogen peroxide. These modifications also link to a number of mitochondria-associated and other signaling pathways. Furthermore, many of the modification sites were common sites of previously reported tyrosine phosphorylation suggesting potential disruption of signaling pathways. Structural aspects of DOPA-modified tyrosine sequences are distinct from those of nitrotyrosines suggesting that each type of modifications provides a marker for different in vivo reactive chemistries and can be used to predict sensitive protein targets. Collectively, the results suggest that these modifications are linked with mitochondrially-derived oxidative stress, and may serve as sensitive markers for disease pathologies.

Revised: December 21, 2011 | Published: June 2, 2010

Citation

Zhang X., M.E. Monroe, B. Chen, M.H. Chin, T.H. Heibeck, A.A. Schepmoes, and F. Yang, et al. 2010. Endogenous 3, 4- Dihydroxyphenylalanine and Dopaquinone Modifications on Protein Tyrosine: links to mitochondrially derived oxidative stress via hydroxyl radical. Molecular & Cellular Proteomics. MCP 9, no. 6:1199-1208. PNNL-SA-65899.