February 20, 2022
Journal Article

Designing Porous Ion Emitters for Thermal Ionization Mass Spectrometry: Evaluating Metal Organic Frameworks (MOFs)

Abstract

This work describes the first exploration of metal-organic frameworks (MOFs) as ‘next generation’ ion emitters for thermal ionization mass spectrometry (TIMS). MOFs were identified as promising candidates for this application given the synthetic control over their desired structural properties. This tunability results in well-ordered, high surface area, high porosity frameworks with targeted sorption affinities. Here we explored an aluminum-based, bipyridine-containing MOF (MOF-253) with and without incorporating the high work function metal, rhenium (Re). After analysis of a Nd-bearing MOF, we hypothesized that the well-dispersed, sponge-like interconnected network of the degraded structure would enhance Nd ionization more than traditional TIMS loading activators (i.e., phosphoric acid). Compared to filaments loaded with phosphoric acid that require an additional benzene carburization step, the Nd ionization efficiencies (atoms detected relative to atoms loaded) for heated filaments loaded with MOF-253 were similar (~1%). Electron microscopy after TIMS analysis demonstrated that the MOF was retained on the filament and, as hypothesized, preserved sub-micron porosity post analysis. While these results are preliminary, they demonstrate that MOFs have potential to enhance ionization and exceed the performance of traditional loading techniques by forming nano-porous ion emitters (nano-PIEs). Thus, further experimentation is likely to exceed this performance through more specific selection of the base MOF structure and modifications to porosity and composition. This work represents a novel application of MOFs and a next step in the pursuit of advanced thermal ionization with potential to expand across the periodic table.

Published: February 20, 2022

Citation

McHugh K.C., D. Barpaga, M. Sinnwell, S.D. Shen, and V. Shutthanandan. 2022. Designing Porous Ion Emitters for Thermal Ionization Mass Spectrometry: Evaluating Metal Organic Frameworks (MOFs). Analytical Chemistry 94, no. 4:2072-2077. PNNL-SA-166835. doi:10.1021/acs.analchem.1c04160