November 12, 2011
Journal Article

Degradation of Ionic Pathway in PEM Fuel Cell Cathode

Abstract

The degradation of the ionic pathway throughout the catalyst layer in proton exchange membrane fuel cells was studied under an accelerated stress test of catalyst support (potential hold at 1.2 V). Electrochemical behaviors of the cathode based on graphitic mesoporous carbon supported Pt catalyst were examined using electrochemical impedance spectroscopy and cyclic voltammetry. Impedance data were plotted and expressed in the complex capacitance form to determine useful parameters in the transmission line model: the double-layer capacitance, peak frequency, and ionic resistance. Electrochemical surface area and hydrogen crossover current through the membrane were estimated from cyclic voltammogram, while cathode Faradaic resistance was compared with ionic resistance as a function of test time. It was observed that during an accelerated stress test of catalyst support, graphitic mesoporous carbon becomes hydrophilic which increases interfacial area between the ionomer and the catalyst up to 100 h. However, the ionic resistance in the catalyst layer drastically increases after 100 h with further carbon support oxidation. The underlying mechanism has been studied and it was found that significant degradation of ionic pathway throughout the catalyst layer due to catalyst support corrosion induces uneven hydration and mechanical stress in the ionomer.

Revised: January 18, 2012 | Published: November 12, 2011

Citation

Park S., Y. Shao, H. Wan, V.V. Viswanathan, S.A. Towne, P.C. Rieke, and J. Liu, et al. 2011. Degradation of Ionic Pathway in PEM Fuel Cell Cathode. Journal of Physical Chemistry C 115, no. 45:22633-22639. PNNL-SA-81432. doi:10.1021/jp2068599