December 1, 2005
Journal Article

CONTROL OF FE(III) SITE OCCUPANCY ON THE RATE AND EXTENT OF MICROBIAL REDUCTION OF FE(III) IN NONTRONITE

Abstract

A quantitative study was performed to understand how Fe(III) site occupancy controls Fe(III) bioreduction in nontronite by Shewanella putrefaciens CN32. NAu-1 and NAu-2 were nontronites and contained Fe(III) in different structure sites with 16% and 23% total iron (w/w), respectively, with almost all iron as Fe(III). Mössbauer spectroscopy showed that Fe(III) was present in the octahedral site in NAu-1 (with a small amount of goethite), but in both the tetrahedral and the octahedral sites in NAu-2. Mössbauer data further showed that the octahedral Fe(III) in NAu-2 existed in at least two environments- trans (M1) and cis (M2) sites. The microbial Fe(III) reduction in NAu-1 and NAu-2 was studied in batch cultures at a nontronite concentration of 5mg/mL in bicarbonate buffer with lactate as the electron donor. Fe(II) production in inoculated treatments was determined by extraction with 0.5 N HCl and compared to uninoculated controls to establish the extent of biological reduction. The resulting solids were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy, and transmission electron microscopy (TEM). In the presence of an electron shuttle, anthraquinone-2,6-disulfonate (AQDS), the extent of bioreduction was 11-16% for NAu-1 but 28-32% for NAu-2. The extent of reduction in the absence of AQDS was only 5-7% in NAu-1 but 14-18% in NAu-2. The reduction rate was also faster in NAu-2 than that in NAu-1. Mössbauer data of the bioreduced nontronite materials indicated that the Fe(III) reduction in NAu-1 was mostly from the presence of goethite, whereas the reduction in NAu-2 was due to the presence of the tetrahedral and trans-octahedral Fe(III) in the structure. The measured aqueous Fe(II) was negligible [

Revised: February 17, 2006 | Published: December 1, 2005

Citation

Jaisi D.P., R.K. Kukkadapu, D.D. Eberl, and H. Dong. 2005. CONTROL OF FE(III) SITE OCCUPANCY ON THE RATE AND EXTENT OF MICROBIAL REDUCTION OF FE(III) IN NONTRONITE. Geochimica et Cosmochimica Acta 69, no. 23:5429-5440. PNWD-SA-6882. doi:10.1016/j.gca.2005.07.008