Solid oxide fuel cells (SOFCs) have several advantages over other types of fuels cells such as high-energy efficiency and excellent fuel flexibility. To be economically competitive, however, new materials with extraordinary transport and catalytic properties must be developed to dramatically improve the performance while reducing the cost. This article reviews recent advancements in understanding oxygen reduction on various cathode materials using phenomenological and quantum chemical approaches in order to develop novel cathode materials with high catalytic activity toward oxygen reduction. We summarize a variety of results relevant to understanding the interactions between O2 and cathode materials at the molecular level as predicted using quantum-chemical cal-culations and probed using in situ surface vibrational spectroscopy. It is hoped that this in-depth understanding may provide useful insights into the design of novel cath-ode materials for a new generation of SOFCs.
Revised: January 7, 2011 |
Published: October 8, 2009
Citation
Choi Y., D.S. Mebane, J. Wang, and M. Liu. 2009.Continuum and Quantum-Chemical Modeling of Oxygen Reduction on the Cathode in a Solid Oxide Fuel Cell.Topics in Catalysis 46, no. 3-4:386-401. doi:10.1007/s11244-007-9011-x