A non-invasive method for estimating regional myocardial contractility in vivo would be of great value in the design and evaluation of new surgical and medical strategies to treat and/or prevent infarction-induced heart failure. As a first step towards developing such a method, an explicit finite element (FE) model-based formal optimization of regional myocardial contractility in a sheep with left ventricular (LV) aneurysm was performed using tagged magnetic resonance (MR) images and cardiac catheterization pressures. From the tagged MR images, 3-dimensional (3D) myocardial strains, LV volumes and geometry for the animal-specific 3D FE model of the LV were calculated, while the LV pressures provided physiological loading conditions. Active material parameters (Tmax_B and Tmax_R) in the non-infarcted myocardium adjacent to the aneurysm (borderzone) and in myocardium remote from the aneurysm were estimated by minimizing the errors between FE model-predicted and measured systolic strains and LV volumes using the successive response surface method for optimization. The significant depression in optimized Tmax_B relative to Tmax_R was confirmed by direct ex vivo force measurements from skinned fiber preparations. The optimized values of Tmax_B and Tmax_R were not overly sensitive to the passive material parameters specified. The computation time of less than 5 hours associated with our proposed method for estimating regional myocardial contractility in vivo makes it a potentially very useful clinical tool.
Revised: August 9, 2010 |
Published: November 1, 2009
Citation
Sun K., N. Stander, C. Jhun, Z. Zhang, T. suzuki, G. Wang, and M. Saeed, et al. 2009.A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep with Left Ventricular Aneurysm.Journal of Biomechanical Engineering 131, no. 11:Article Number: 111001. PNWD-SA-8585. doi:10.1115/1.3148464