July 2, 2001
Journal Article

Coherent Raman and Infrared Studies of Sulfur Trioxide

Abstract

High resolution (0.001 cm-1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive n1 symmetric stretching mode of 32S 16O3 and its various 18O isotopomers. The v1 spectrum of 32S 16O3 reveals two intense Q-branch regions in the 1065-1067 cm-1 region, with surprisingly complex vibrational-rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving v1 and 2v4 do not reproduce the spectral detail nor yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states; 2v4 (l = 0, ? 2), v2+v4 (l = ? 1), 2v2 (l =0) is suspected and a determination of the location of these coupled states by high resolution infrared measurements is underway. At medium resolution (0.125 cm-1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the v2, v3, v4 fundamental modes of 32S 18O3, 32S 18O2 16O and 32S 18O 16O2. These and literature data for 32S 16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with a recent ab initio calculation by Martin. *In memory of Dr. Nicolae Vulpanovici (1968-2001)

Revised: September 3, 2008 | Published: July 2, 2001

Citation

Chrysostom E., N. Vulpanovici, A. Masiello, J.B. Barber, J.W. Nibler, A. Weber, and A. Maki, et al. 2001. Coherent Raman and Infrared Studies of Sulfur Trioxide. Journal of Molecular Spectroscopy 210. PNNL-SA-34955.