February 22, 2023
Journal Article

Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50

Abstract

DarkSide-50 has demonstrated the high potential of dual-phase liquid argon time projection chambers in exploring interactions of WIMPs in the GeV=c2 mass range. The technique, based on the detection of the ionization signal amplified via electroluminescence in the gas phase, allows us to explore recoil energies down to the sub-keV range. We report here on the DarkSide-50 measurement of the ionization yield of electronic recoils down to ~180 eVer, exploiting 37Ar and 39Ar decays, and extrapolated to a few ionization electrons with the Thomas-Imel box model. Moreover, we present a model-dependent determination of the ionization response to nuclear recoils down to ~500 eVnr, the lowest ever achieved in liquid argon, using in situ neutron calibration sources and external datasets from neutron beam experiments.

Published: February 22, 2023

Citation

Agnes P., I. Albuquerque, T.R. Alexander, A.K. Alton, M. Ave, H.O. Back, and G. Batignani, et al. 2021. Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50. Physical Review D 104, no. 8:Art. No. 082005. PNNL-SA-180028. doi:10.1103/PhysRevD.104.082005

Research topics