May 26, 2023
Journal Article

A Bayesian Approach for Characterizing and Mitigating Gate and Measurement Errors

Abstract

Various noise models have been developed in quantum computing study to describe the propagation and effect of the noise which is caused by imperfect implementation of hardware. Identifying parameters such as gate and readout error rates are critical to these models. We use a Bayesian inference approach to identify posterior distributions of these parameters, such that they can be characterized more elaborately. By characterising the device errors in this way, we can further improve the accuracy of quantum error mitigation. Experiments conducted on IBM’s quantum computing devices suggest that our approach provides better error mitigation performance than existing techniques used by the vendor. Also, our approach outperforms the standard Bayesian inference method in some scenarios.

Published: May 26, 2023

Citation

Zheng M., A. Li, T. Terlaky, and X. Yang. 2023. A Bayesian Approach for Characterizing and Mitigating Gate and Measurement Errors. ACM Transactions on Quantum Computing 4, no. 2:Art. No. 11. PNNL-SA-176720. doi:10.1145/3563397