Abstract
In this report, rationally functionalized, highly water-soluble phenazine derivatives are disclosed as a new class of redox-active anolyte material for aqueous redox flow batteries. These compounds are compatible with basic electrolytes leading to relatively high rate performance. They have sufficiently low redox potential (-1V vs Ag/AgCl) in basic electrolytes, which can enable high voltage flow batteries systems. In addition, they have two electron transfers and this is very helpful to improve their energy density by double. When coupled with potassium ferrocyanide, the flow cell exhibited a relatively stable cycling for ~300 cycles at 20 mA/cm2. The great cyclability indicate that these compounds and their charged species are chemically very stable, promising for highly durable flow battery systems. Moreover, these compounds can be synthesized from very inexpensive precursors through simple one-step synthesis. This feature allows easy molecular engineering to enable high solubilities and can lead to high cost-effectiveness redox materials. Therefore, the organic phenazine derivative compounds are expected to be promising material candidates to achieve competitive aqueous redox flow batteries that have high voltage, high energy density, good power density, long durability, and low cost.
Application Number
15/625,750
Inventors
Wang (Richland),Wei
Hollas,Aaron
Nie,Zimin
Li,Bin
Wei,Xiaoliang
Sprenkle,Vince
Market Sector
Energy Storage
Energy Infrastructure