Staff information
Kate Schultz
Data Scientist
Send Email
PNNL Publications
2024
- Hollerbach A.L., Y.M. Ibrahim, V.S. Lin, K.J. Schultz, A.P. Huntley, P.B. Armentrout, and T.O. Metz, et al. 2024. "Identification of Unique Fragmentation Patterns of Fentanyl Analog Protomers using Structures for Lossless Ion Manipulations Ion Mobility-Orbitrap Mass Spectrometry." Journal of the American Society for Mass Spectrometry 35, no. 4:793-803. PNNL-SA-192943. doi:10.1021/jasms.4c00049
- Rude C.I., L.B. Wilson, J.K. La Du, P.M. Lalli, S.M. Colby, K.J. Schultz, and J.N. Smith, et al. 2024. "Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence." Toxicological Sciences 202, no. 1:50-68. PNNL-SA-196662. doi:10.1093/toxsci/kfae098
- Schultz K.J., J.H. Nguyen, V.S. Lin, C. Kombala Nanayakkara Thambiliya, K.J. Tyrrell, and P.M. Lalli. 2024. Heracles: Predictive Tools for Opioid Crisis Intervention - m/q Initiative Project Report. PNNL-36739. Richland, WA: Pacific Northwest National Laboratory. Heracles: Predictive Tools for Opioid Crisis Intervention - m/q Initiative Project Report
- Thibert S.M., D.J. Reid, J.W. Wilson, R.A. Varikoti, N. Maltseva, K.J. Schultz, and A. Kruel, et al. 2024. "Native Mass Spectrometry Dissects the Structural Dynamics of an Allosteric Heterodimer of SARS-CoV-2 Nonstructural Proteins." Journal of the American Society for Mass Spectrometry 35, no. 5:912-921. PNNL-SA-189769. doi:10.1021/jasms.3c00453
2023
- Joshi R., K.J. Schultz, J.W. Wilson, A. Kruel, R.A. Varikoti, C. Kombala Nanayakkara Thambiliya, and D.W. Kneller, et al. 2023. "AI-Accelerated Design of Targeted Covalent Inhibitors for SARS-CoV-2." Journal of Chemical Information and Modeling 63, no. 5:1438-1453. PNNL-SA-176233. doi:10.1021/acs.jcim.2c01377
2022
- Varikoti R.A., K.J. Schultz, M. Zhou, C. Kombala Nanayakkara Thambiliya, K.R. Brandvold, A. Kruel, and N. Kumar. 2022. Machine Learning-driven Molecular Design for Therapeutic Discovery. PNNL-33349. Richland, WA: Pacific Northwest National Laboratory. Machine Learning-driven Molecular Design for Therapeutic Discovery
- Zhou M., K.J. Schultz, J.W. Wilson, A. Kruel, S.M. Thibert, C.C. Bracken, and D.J. Orton, et al. 2022. High-throughput native mass spectrometry as experimental validation for in silico drug design. PNNL-33361. Richland, WA: Pacific Northwest National Laboratory. High-throughput native mass spectrometry as experimental validation for in silico drug design
2021
- Schultz K.J., S.M. Colby, V.S. Lin, A.T. Wright, and R.S. Renslow. 2021. "Ligand- and Structure-Based Analysis of Deep Learning-Generated Potential alpha2a Adrenoceptor Agonists." Journal of Chemical Information and Modeling 61, no. 1:481-492. PNNL-SA-155859. doi:10.1021/acs.jcim.0c01019
- Schultz K.J., S.M. Colby, Y. Yesiltepe, J. Nunez, M.Y. McGrady, and R.S. Renslow. 2021. "Application and Assessment of Deep Learning for the Generation of Potential NMDA Receptor Antagonists." Physical Chemistry Chemical Physics 23, no. 2:1197-1214. PNNL-SA-152120. doi:10.1039/D0CP03620J