Skip to Main Content U.S. Department of Energy
Fundamental and Computational Sciences Directorate

Staff information

Kate Schultz

Data Scientist

PNNL Publications

2024

  • Hollerbach A.L., Y.M. Ibrahim, V.S. Lin, K.J. Schultz, A.P. Huntley, P.B. Armentrout, and T.O. Metz, et al. 2024. "Identification of Unique Fragmentation Patterns of Fentanyl Analog Protomers using Structures for Lossless Ion Manipulations Ion Mobility-Orbitrap Mass Spectrometry." Journal of the American Society for Mass Spectrometry 35, no. 4:793-803. PNNL-SA-192943. doi:10.1021/jasms.4c00049
  • Rude C.I., L.B. Wilson, J.K. La Du, P.M. Lalli, S.M. Colby, K.J. Schultz, and J.N. Smith, et al. 2024. "Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence." Toxicological Sciences 202, no. 1:50-68. PNNL-SA-196662. doi:10.1093/toxsci/kfae098
  • Schultz K.J., J.H. Nguyen, V.S. Lin, C. Kombala Nanayakkara Thambiliya, K.J. Tyrrell, and P.M. Lalli. 2024. Heracles: Predictive Tools for Opioid Crisis Intervention - m/q Initiative Project Report. PNNL-36739. Richland, WA: Pacific Northwest National Laboratory. Heracles: Predictive Tools for Opioid Crisis Intervention - m/q Initiative Project Report
  • Thibert S.M., D.J. Reid, J.W. Wilson, R.A. Varikoti, N. Maltseva, K.J. Schultz, and A. Kruel, et al. 2024. "Native Mass Spectrometry Dissects the Structural Dynamics of an Allosteric Heterodimer of SARS-CoV-2 Nonstructural Proteins." Journal of the American Society for Mass Spectrometry 35, no. 5:912-921. PNNL-SA-189769. doi:10.1021/jasms.3c00453

2023

  • Joshi R., K.J. Schultz, J.W. Wilson, A. Kruel, R.A. Varikoti, C. Kombala Nanayakkara Thambiliya, and D.W. Kneller, et al. 2023. "AI-Accelerated Design of Targeted Covalent Inhibitors for SARS-CoV-2." Journal of Chemical Information and Modeling 63, no. 5:1438-1453. PNNL-SA-176233. doi:10.1021/acs.jcim.2c01377

2022

2021

  • Schultz K.J., S.M. Colby, V.S. Lin, A.T. Wright, and R.S. Renslow. 2021. "Ligand- and Structure-Based Analysis of Deep Learning-Generated Potential alpha2a Adrenoceptor Agonists." Journal of Chemical Information and Modeling 61, no. 1:481-492. PNNL-SA-155859. doi:10.1021/acs.jcim.0c01019
  • Schultz K.J., S.M. Colby, Y. Yesiltepe, J. Nunez, M.Y. McGrady, and R.S. Renslow. 2021. "Application and Assessment of Deep Learning for the Generation of Potential NMDA Receptor Antagonists." Physical Chemistry Chemical Physics 23, no. 2:1197-1214. PNNL-SA-152120. doi:10.1039/D0CP03620J

Science at PNNL

Core Research Areas

User Facilities

Centers & Institutes

Research Highlights

View All Research Highlights & Staff Accomplishments

RSS Feed

Contacts