Skip to Main Content U.S. Department of Energy
Fundamental and Computational Sciences Directorate

Staff information

Tobias Hagge

Mathematician
Pacific Northwest National Laboratory
PO Box 999
MSIN: J4-32
Richland, WA 99352

PNNL Publications

2022

  • Young S.J., S.G. Aksoy, J.S. Firoz, R. Gioiosa, T.J. Hagge, M.C. Kempton, and J. Escobedo Contreras, et al. 2022. "SpectralFly: Ramanujan Graphs as Flexible and Efficient Interconnection Networks." In IEEE International Parallel and Distributed Processing Symposium (IPDPS 2022), May 30-June 03, 2022, Virtual, Online, 1040-1050. Los Alamitos, California:IEEE Computer Society. PNNL-SA-160551. doi:10.1109/IPDPS53621.2022.00105

2019

  • Khan M.H., M. Halappanavar, T.J. Hagge, K. Kowalski, A. Pothen, and S. Krishnamoorthy. 2019. "Mapping Arbitrarily Sparse Two-body Interactions on One-dimensional Quantum Circuits." In IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC 2019), December 17-20, Hyderabad, India, 52-62. Los Alamitos, California:IEEE Computer Society. PNNL-SA-144919. doi:10.1109/HiPC.2019.00018
  • Stinis P., T.J. Hagge, A.M. Tartakovsky, and E.H. Yeung. 2019. "Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks." Journal of Computational Physics 397. PNNL-SA-133233. doi:10.1016/j.jcp.2019.07.042

2018

  • Corley C.D., N.O. Hodas, E.H. Yeung, A.M. Tartakovsky, T.J. Hagge, S. Choudhury, and K. Agarwal, et al. 2018. "Deep Learning for Scientific Discovery." The Next Wave 22, no. 1:27-31. PNNL-SA-129480.

2017

  • Hagge T.J., P. Stinis, E.H. Yeung, and A.M. Tartakovsky. 2017. "Solving differential equations with unknown constitutive relations as recurrent neural networks." In Deep Learning for the Physical Sciences (NIPS Workshop), December 8, 2017, Long Beach, California. La Jolla, California:Neural Information Processing Systems Foundation, Inc. PNNL-SA-130320.
  • Larche M.R., M.S. Prowant, P.J. Bruillard, T.J. Hagge, L.S. Fifield, M.S. Hughes, and X. Sun. 2017. "A Comparison of Different NDE Signal Processing Techniques Based on Waveform Entropies Applied to Long Fiber Graphite/Epoxy Plates." In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, March 25, 2017, Portland, Oregon, Proceedings of the SPIE, edited by HF Wu, AL Gyekenyesi, PJ Shull and T-Y Yu, 10169, Paper No. 101690T. Bellingham, Washington:SPIE. PNNL-SA-125214. doi:10.1117/12.2260490

Science at PNNL

Core Research Areas

User Facilities

Centers & Institutes

Research Highlights

View All Research Highlights & Staff Accomplishments

RSS Feed

Contacts