Staff information
Nellie Ciesielski
Data Scientist
Send Email
PNNL Publications
2025
- Ciesielski D.K., Y. Li, S. Hu, E. King, J.F. Corbey, and P. Stinis. 2025. "Deep operator network surrogate for phase-field modeling of metal grain growth during solidification." Computational Materials Science 246, no. _:Art. No. 113417. PNNL-SA-198433. doi:10.1016/j.commatsci.2024.113417
2024
- Nguyen J.H., R.E. Overstreet, E. King, and D.K. Ciesielski. 2024. "Advancing the Prediction of MS/MS Spectra using Machine Learning." Journal of the American Society for Mass Spectrometry 35, no. 10:2256-2266. PNNL-SA-197287. doi:10.1021/jasms.4c00154
- Overstreet R.E., E. King, G.P. Clopton, J.H. Nguyen, and D.K. Ciesielski. 2024. "QC-GN2oMS2: a Graph Neural Net for High Resolution Mass Spectra Prediction." Journal of Chemical Information and Modeling 64, no. 15:5806-5816. PNNL-SA-195950. doi:10.1021/acs.jcim.4c00446
2023
- Athon M.T., D.K. Ciesielski, J.F. Corbey, S. Hu, E. King, Y. Li, and J.I. Royer, et al. 2023. Visualizing Uranium Crystallization from Melt: Experiment-Informed Phase Field Modeling and Machine Learning. PNNL-35126. Richland, WA: Pacific Northwest National Laboratory. Visualizing Uranium Crystallization from Melt: Experiment-Informed Phase Field Modeling and Machine Learning
2022
- King E., R.E. Overstreet, J.H. Nguyen, and D.K. Ciesielski. 2022. "Augmentation of MS/MS Libraries with Spectral Interpolation for Improved Identification." Journal of Chemical Information and Modeling 62. PNNL-SA-173200. doi:10.1021/acs.jcim.2c00620
- Wenskovitch J.E., A.A. Anderson, S. Kincic, C. Fallon, D.K. Ciesielski, J.A. Baweja, and M.C. Mersinger, et al. 2022. "Operator Insights and Usability Evaluation of Machine Learning Assistance for Power Grid Contingency Analysis." In Human Factors in Energy: Oil, Gas, Nuclear and Electric Power. AHFE (2022) International Conference., July 24-28, 2022, New York, NY, edited by R. Boring and R. McDonald, 54, 40-48. New York, New York:AHFE International. PNNL-SA-170435. doi:10.54941/ahfe1002219
- Wenskovitch J.E., B.A. Jefferson, A.A. Anderson, J.A. Baweja, D.K. Ciesielski, and C. Fallon. 2022. "A Methodology for Evaluating Operator Usage of Machine Learning Recommendations for Power Grid Contingency Analysis." Frontiers in Big Data 5. PNNL-SA-171158. doi:10.3389/fdata.2022.897295