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Field-scale geophysical characterization provides a
framework for modeling relatively large-scale features (=180 t=2000 t=5160
(hydrofacies) and their spatial distribution (including
uncertainty). Within each hydrofacies class, samples will
be subjected to

as the basis for pore-scale simulations of critical geo- 3
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Below left: 3D visualization of simulated Lagrangian particles moving through a 3D wavy tube, computed using grid- and computational sciences. The Laboratory employs 4 000 staff members. has a
based CFD methods. e Pl o

$760 million annual budget, and has been managed by Ohio-based Battelle since
Below right: Axial dispersion in the wavy tube, calculated using our CFD model and compared with literature reports. 1965.

eses (microenvironments and transition zones are local-
scale features that exert control on field-scale
phenomena)
* Quantitative understanding of coupled flow, transport
and reaction at the pore scale (mass transfer of
uranium)
* Development and testing of rigorous continuum-scale
models based on pore-scale simulations
* Prediction of laboratory- and field-scale experimental
observations using upscaled, pore-scale, and hybrid
models (with minimal “calibration”)
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