
  
Abstract— Driver distraction is a major factor in loss of life 

and property on our nation’s highways and the broader 
transportation systems. The role of wireless devices as a source 
of distraction is well established, significant, and growing. The 
potential of enabling such devices with the intelligence to detect 
distracted cognitive states of vehicle operators is of significant 
interest. This paper describes a concept that enables cell phones 
to autonomously detect distracted driving behaviors associated 
with texting. Unlike conventional methods, this detection 
paradigm measures how texting performance is affected by 
driving instead of how driving performance is affected by 
texting, which is well documented. This new approach can be 
extended to other device inputs such as speech and is 
compatible with a spectrum of countermeasure actions to 
mitigate the source of distraction. A cell phone was 
programmed to log keystroke dynamics using a common 
operating system. This platform was used to characterize the 
texting dynamics of six subjects. Study participants were 
observed texting alone and, during a separate session, while 
texting and operating a driving simulator. This study yielded 
reliable distracted driving signatures that are independent of 
the explicit communications language and text content. This 
paper discusses the results in light of acknowledged distracted 
driving challenges, the potential of using the method for 
autonomous mitigation, and the speed of classification. 
 

Index Terms— distracted driving, texting, cognitive 
imparment, entropy 
 

Nomenclature— 
CV coefficient of variation 
E Shannon Entropy 
NHTSA National Highway Transportation Safety 

Administration 
NTSB National Transportation Safety Board 
PDF probability distribution function 
ROC receiver operational characteristic 
Symbian OS Symbian Operating System 
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I. BACKGROUND 
RIVER distraction is a major factor in loss of life and 

suffering on our nation’s highways. The role of wireless 
device use is well established and, unfortunately, typically 
discovered as a casual factor after the damage has been done. 
Cell phone records are routinely obtained in the aftermath of 
unexplained crashes all too often to find that the vehicle 
operator was texting or talking prior to the incident. “Driver 
distractions have joined alcohol and speeding as leading 
factors in fatal and serious injury crashes” [1]. During the 
First Distracted Driving Summit (September 2009) U.S. 
Transportation Secretary, Ray LaHood, pronounced that 
“Distracted driving is a deadly epidemic… On any given 
day in 2008, more than 812,000 vehicles were driven by 
someone using a hand-held cell phone... Every single time 
someone takes their eyes or focus off the road—even just for 
a few seconds—they put their lives and the lives of others in 
danger.” The most high-profile incident involving texting 
while operating a motor vehicle was the September 12, 2008, 
crash of a commuter train in California. This tragedy resulted 
in the death of 25 people and the injury of more than 100. 
The National Transportation Safety Board (NTSB) 
concluded that “the probable cause of the collision was the 
failure of the Metrolink engineer to comply with the red 
signal at Control Point Topanga because he was texting on 
his personal wireless device, in violation of company policy. 
Distracted from his duties, he did not stop the train and 
collided head-on with the approaching freight train. He did 
so, despite earlier track signals and radio calls indicating he 
would need to stop.” [2]  

The National Highway Transportation Safety 
Administration (NHTSA) reported that 5,870 deaths and 
515,000 injuries were associated with driver distraction [3]. 
The Harvard Center for Risk Analysis estimates that close to 
half of these deaths and accidents are attributable to 
distractions due to cell phone usage [4]. On October 1, 2009, 
a Presidential Executive Order, Federal Leadership on 
Reducing Text Messaging While Driving, was issued [5]. 

In April 2008, NHTSA published a report that 
summarized the nature of the distracted driver problem and 
challenges “Driver Distraction: A Review of the Current 
State-of-Knowledge” [6]. Several key aspects of the 
distracted driver problem are described. Detecting and 
measuring driver distraction is a major challenge “Because 
of the significant difficulties inherent in measuring driver 
attention… unlike seat belt use, the driver’s attention status 
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cannot be categorized as “yes” or “no,” and it cannot be 
quantified in the same manner as blood alcohol level” (p. 
3). The problem is anticipated to worsen “… the continually 
increasing number of cellphone users [and] the fact that 
phones are now being used for many more activities… 
specifically text messaging…” (p. 15). Common 
countermeasures will not be adequate to address the 
problem. “Standard behavioral countermeasures, including 
laws, enforcement, and sanctions, are considered unlikely to 
be effective because distraction is a broad societal problem 
associated with lifestyle patterns and choices” (p. 18). Most 
approaches to quantify driver distraction have focused on, 
quite reasonably, metrics associated with observations of 
“driving function or outcomes” to infer the level of cognitive 
impairment. Onboard vehicle technology solutions for 
detecting and measuring driver impairment will be complex. 
Leading research, involving the auto industry and traffic 
safety organizations, have consistently found that assessing 
the level of cognitive impairment, using behavior metrics 
such as eye-glance, lateral vehicle control, longitudinal 
vehicle control, and object-event-detection is extremely 
difficult. “The ultimate safety effects of new in-vehicle 
technologies cannot be known until the technologies are 
used in real-world driving, and data pertaining to drivers’ 
willingness to engage in the secondary tasks are obtained” 
(p. 4–6). 

In March 2008 the NHTSA published “Driver Strategies 
for Engaging in Distracting Tasks Using In-Vehicle 
Technologies” [7]. This report analyzed driver behavior and 
made recommendations regarding distracted driving 
countermeasures. Three categories of countermeasure were 
described: 1) Administrative Controls or Behavioral 
Countermeasures, education and training campaigns, laws, 
enforcement, and sanctions; 2) Soft Engineering Controls, 
engineered solutions that aim to reduce the level of driver 
distraction from various sources. These include 
improvements in “device” user interface to reduce driver 
distraction and other driver-assist technology; and 3) Hard 
Engineering Controls—Automatic Lock-out, engineered 
solutions that effectively eliminate the source of distraction 
by disabling the device while the user is driving. An example 
from the automotive industry is a common lock-out feature 
that is incorporated into vehicle navigation systems. In this 
case, the navigation system is locked-out when the vehicle is 
in gear and/or in motion. To date, engineered controls, as 
applied to cell phones and other wireless digital devices pose 
unique challenges in determining when a countermeasure 
should be activated. Several currently available lock-out 
approaches have been proposed that are triggered by a 
combination of GPS signal and/or a secondary device such 
as pairing with the vehicle’s Bluetooth system. Other 
solutions rely on analyzing other elements of the device 
usage data via the wireless transmission. Each of these is 
dependent on a secondary device and/or off-board data 
analysis. None directly measure the level of driver 

distraction nor can they reliably discriminate between a 
vehicle operator and a passenger. This is of particular 
relevance for users of mass transit and the like. 

II. METHODOLOGY 
The current approach is anchored in quantifying the nature 

of a motor vehicle operator’s interaction with a cell phone 
thus gaining information about the cognitive state of the user 
by assessing a complementary problem, “distracted texting.” 
Texting was chosen as it represents a high-profile cognitive 
workload situation. The operating hypothesis is that the 
texting dynamics associated with concurrent vehicle 
operation yields unique signatures. The experimental 
platform consisted of a cell phone programmed to log the 
duration and sequence of keystrokes. The Nokia model 6790 
Surge phone was selected because it represented a common 
commercial device with a QWERTY keyboard. The logging 
application was based on the Symbian Operating System 
(Symbian OS). This prototype application captures key 
events for all letters, numbers, space, backspace, and 
punctuation characters such as comma, period, and question 
mark. Each key event is logged to a file with the following 
information: timestamp, event type (key up or key down), 
and key pressed. This data contained the standard keystroke 
digraph (time between keystrokes) information. All the 
normal data transfer functions were operable and the 
experimental trials involved text messaging via a commercial 
service. 

Validation of the data logger performance was achieved 
by actuating keystrokes using a programmable piston as a 
surrogate finger. A series of evaluations were conducted with 
key depression frequencies of 1–10 Hz and 20 Hz. These 
artificial keystroke frequencies spanned the expected range 
for human subjects. As a point of reference, on August 23, 
2010, Melissa Thompson of Manchester, England, was 
reported to set a world record for texting. Melissa texted a 
160-character message in approximately 26 s [8]. This 
corresponds to a keystroke frequency of about 6 Hz. The 
logger demonstrated excellent performance. For example, a 
sampling of 100 actuations at 5.00 Hz (a period = 200 ms) 
yielded a mean period of 200.00 ms with a standard 
deviation of 3.16 ms and a coefficient of variation (CV) of 
1.58%. This represents a resolution that is over 50 times 
greater than the interval between keystrokes of an extremely 
fast texter [9].  

Six subjects were selected from a volunteer pool. The 
screening criteria were that subjects could read and text 
English messages from a cell phone, and the study was 
normalized by selecting subjects who were experienced at 
texting with both hands and had the use of five fingers on 
each hand. Each subject completed four activities in the 
following order: 1) a 20-minute acclamation period of 
texting on the study phone, 2) a 20-minute acclamation 
period for driving the simulator, 3) a 20-minute texting 
session while not driving the simulator where non-driving 
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texting data were collected, and 4) a 20-minute session of 
simultaneous texting and driving the simulator where texting 
and driving data were collected. While driving, participants 
were asked to operate the simulator safely, negotiating 
common traffic situations, and avoiding common traffic 
hazards, obstacles, etc. The simulator included a steering 
wheel, brake pedal, and accelerator pedal. The driving scene 
was displayed on a large desktop monitor. Although the 
simulation was not a high-fidelity replication of an actual 
driving experience, the challenge level was the same for all 
participants and was selected to approximate the frequency 
of traffic challenges presented by normal traffic conditions; 
that is, the driving task did not constitute a hyper-real, 
highly-stimulating gaming situation. 

Texting “conversations” were simulated by asking 
participants to echo (return the same text message as the one 
received) a series of incoming text message. The library of 
“incoming messages” averaged 48 characters (including 
spaces) in length, an average of 10 words. The incoming 
message was randomly selected from the library without 
replacement. Although subjects were not quantitatively 
evaluated on the quality of their texting or driving, they were 
observed while texting alone and texting while driving. 

III. RESULTS 
All subjects were observed to use a two-handed texting 

technique when texting only. Drivers employed a variety of 
adaptation strategies for texting while driving. Examples 
were a two-handed technique for texting, with the palms 
placed on the top of the steering wheel; single-handed 
texting; and two-handed texting with hands off the steering 
wheel other than for intermittent steering corrections. 
Preliminary statistical analysis of both key hold times and 
digraph (time between keystrokes) data were conducted, and 
it was determined that the digraph data warranted priority for 
further analysis. Subject 245 is representative of the key 
findings. Fig. 1 is a histogram approximating probability 
density functions of the digraphs for texting only (solid line) 
and texting while driving (dashed line) for this subject. The 
dominant feature, the difference in area under the curve, 
reflects the difference in the volume of the text that was 
processed. As expected, the volume of texting while driving 
was less than that for texting alone. Because there are many 
potential contributors to variations in gross texting rate, a 
more mechanistically based analysis was warranted. 

IV. DEVELOPMENT OF A CLASSIFICATION MODEL 
It was anticipated that the text messages of subjects 

engaged in texting while driving would exhibit a higher level 
of entropy as compared to the texting data for the same 
subject texting alone. Entropy reflects the complexity of an 
activity and the information content of the associated data. 
Prior work involving driver steering input supports this idea  
 

 
 

Fig. 1. Histogram approximating probability density functions of the 
digraphs for text only (solid line) and text while driving (dashed line) 
for subject 245. 

 
and provides a mechanistic cognitive framework for 
developing a classification model to detect and quantify 
operator distraction. The action of executing a steering 
correction is a useful analog to depressing cell phone keys in 
that they both have quantifiable temporal dimensions. 
Specifically, it has been demonstrated that introducing a 
distracting task altered the frequency and amplitude 
distribution function of corrections in such a way as to 
increase the measured entropy. Boer and Nakayama 
concluded that increases in steering entropy are indicative of 
the level of driver distraction. “...Delayed event detection 
and degraded vehicle control are observed when drivers fuel 
their need to perform extra-driving activities. Vehicle 
control and event detection are shown to degrade most if the 
in-vehicle task requires spatial cognitive resources and/or if 
the activity requires visual perception and/or manual 
control manipulation... The signature of a lack of 
understanding and a lack of control is an erratic, 
unpredictable, and inefficient behavior that we quantify with 
an entropy measure... These signatures are also observed in 
eye movements, in interaction with interfaces, and in control 
of dynamical systems…” [10-12]. Steering entropy has been 
studied for both driving simulators and on-road driving with 
cell phone use as a secondary task. Other research 
established that an increase in steering entropy resulted from 
having subjects operate a driving simulator after consuming 
alcohol [13]. As will be discussed below, the current findings 
are consistent with those cited above.   

Shannon Entropy (E) was investigated as a texting 
performance measure since, while texting and driving, the 
two tasks compete for some of the same cognitive resources. 
For discrete problems, such as this, a discrete estimate of 
entropy is used and is defined by (1), where the probability 
density function is estimated by a histogram of the data so 
that p(ti) is the estimated probability of an event occurring at 
delta time, ti, and N is the number of bins used to form the 
histogram. 
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The metric of merit investigated was the change in entropy 

(ΔE = Etxt w/drvng - Etxt), where Etxt w/drvng is the entropy for 
texting while driving and Etxt is the entropy while texting 
alone. ΔE was positive for all subjects and reflected a 
fundamental increase in the complexity of the driver’s 
activity and the information content of the texting data. The 
entropy data were used to investigate a very practical 
question: What is the sensitivity of entropy to the number (n) 
of sampled keystrokes? This was investigated using a Monte 
Carlo technique. It should be noted that this preliminary 
analysis assumes a worst-case sampling scenario, equal 
sample sizes for non-driving and driving keystrokes. A more 
realistic and favorable scenario is that the non-driving 
baseline sample size will be much larger than the sample size 
for evaluation, allowing for more rapid detection of driver 
inattention. Thus the assessment of the method reliability 
presented below represents a conservative evaluation. The 
Monte Carlo method yielded an estimate of the entropy 
probability distribution functions (PDF) for each subject 
under both texting conditions. The result was an estimate of 
the PDF that was then used to calculate E(n). Fig. 2 is an 
example of the observed increase in separation of the 
entropy distributions as the number of keystrokes was 
increased from 100 to 500. Distinct and significant 
distribution shifts were observed for each participant. 

The feasibility of using an entropy-based discriminator for 
texting while driving was further evaluated by generating 
Receiver Operational Characteristic (ROC) curves. These 
revealed that, for all except one behavioral outlier (discussed 
below), it is possible to make a highly reliable (true positive 
rates > 99.0% with false positive rates < 1.0%) classification. 
The ROC curves for subjects #369 and #281 are indicative 
of a nearly ideal response for n ≥ 100. Subjects #245, #473, 
and #750 required a higher sample (n ≥ 500) to achieve these 
rates. Although the qualitative change in entropy distribution 
was the same for subject #592 as for the other participants, 
the quantitative difference was strikingly smaller. This can 
be explained by considering the observed driving behavior of 
this participant. During the simulated driving while texting 
phase, subject #592 was observed to engage in more off-road 
and in what can be described as high-risk driving behavior. 
This was accompanied by a higher number of traffic 
incidents than any of the other participants. It is very 
unrealistic to expect that this level of bias toward attention to 
the cell phone task would be observed for on-road driving 
since the increased real and perceived risk would result in 
redirecting attention away from texting and toward driving. It 
is anticipated that, for on-road driving, subject #592 would 
exhibit quantitative differences in entropy distribution and 
 

 
 
Fig. 2. Illustration of the increased separation of the entropy 
distributions as the number of keystrokes was increased from 100 to 
500. 
 

ROC curves similar to those of the other subjects. Fig. 3 
illustrates the ROC curves for subject 245. In terms of 
differences in entropy, the two cases (texting versus texting 
while driving) are separable with thresholds of 2.5% to 7.5% 
increases over mean non-texting entropy. Table I contains 
data points from the ROC curves to illustrate the keystroke 
sampling to achieve a true positive rate of ≥ 99%. For 
purposes of discussion, an estimate of the “time to detection” 
is included. This estimate assumes a keystroke rate of 2 Hz, 
the average rate for the 10,115 keystrokes logged in the 
study. The results show that reliable discrimination can be 
obtained within several hundred keystrokes. This 
demonstrates excellent agreement with prior work (reporting 
error rates of around 2%) for authenticating the identity of 
keyboard user [14]. 

As mentioned earlier, the 70% false positive rate for 
subject #592 is explained by the relatively high attention 
level for texting while driving. This was accompanied by an 
elevated engagement in off-road and high-risk driving 
behavior that is unlikely to be replicated under on-road 
driving conditions.  
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Fig. 3. ROC curves illustrating the fidelity of using keystroke entropy 
to distinguish a texting driver from a non-texting driver. Each curve 
represents a different keystroke sample size (n). 
 
TABLE I. DATA EXTRACTED FROM THE ROC CURVES ILLUSTRATE THE 

REQUIRED KEYSTROKE SAMPLING TO ACHIEVE A TRUE POSITIVE RATE OF 
≥ 99% FOR ALL SUBJECTS 

Subject # Keystrokes 
Sampled (n) 

Estimate of Time 
to Detection 

(minutes) 

True 
Pos. (%) 

False 
Pos. (%) 

369 100 0.8 > 99 < 1 
281 100 0.8 > 99 < 1 
245 500 4.2 > 99 < 1 
473 500 4.2 > 99 < 1 
750 500 4.2 > 99 < 1 
592 750 6.3 > 99 ~70 

 
The proposed concept is compatible with existing device 

operating systems and leverages GPS vehicle signatures to 
avoid nuisance false positives. Incorporating GPS signature 
filters to screen texting data from devices that are not being 
transported will further increase the reliability. In cases 
where the device is being transported during texting, the 

mode of transport could be informed by the GPS signature 
(e.g., automobile, bus, train, ship, etc.). This knowledge can 
be used to assess relative risk scenarios and reduce the 
likelihood of nuisance (false positives) for vehicle passenger. 
Table II illustrates such a logic filter. S represents an 
appropriate GPS displacement signature parameter that 
reflects the likelihood that the device and user are occupants 
of a particular type of motor vehicle. If S is below some 
threshold, the state remains 0. If S exceeds the threshold and 
E is below a critical threshold, the state remains 0. This 
would be the case for a vehicle passenger. An additional 
level of reliability can be achieved by taking into account the 
type of vehicle. For instance, the likelihood of the user being 
a passenger for a bus displacement signature is much greater 
than the likelihood of being a passenger for an automobile 
signature. A distracted driving state of 1 is realized when 
both S and E exceed their critical thresholds. Otherwise no 
mitigation action is taken thus reducing the likelihood that a 
passenger’s texting activity would be inappropriately 
interrupted.   

 
TABLE II. GPS STATE FILTER FOR TAKING A MITIGATION ACTION. A STATE 

OF 1 TRIGGERS ACTIVATION AND A STATE OF 0 RESULTS IN NO ACTION. 

 E > Ethreshold  E < Ethreshold  
S < Sthreshold  0 0 

S > Sthreshold  1 0 

V. DISCUSSION 
This study demonstrates that cell phones can 

autonomously, rapidly, and reliably detect driver distraction, 
by quantifying and evaluating changes in the device user’s 
keystroke dynamics. This technique may provide a 
significant tool in addressing the growing problem of 
distracted driving within our nation’s transportation system. 
The method provides several major advantages over the 
state-of-the-art. It addresses the “passenger problem,” 
eliminates the need for a secondary in-vehicle device, 
requires no additional cell phone hardware, no exporting of 
the texting data, and does not require detailed knowledge of 
the linguistic information contained in the message. The 
latter is of particular interest in maintaining privacy of the 
texter. Although the preliminary classification method used 
scalar keystroke entropy, the method can be generalized to 
rich keystroke vector data (digraphs) and speech patterns. 
The approach is also applicable for alternative and evolving 
device inputs such as SWYPE texting. Vector fields, 
mathematically analogous to texting digraphs and SWYPE 
texting, have been used to characterize the intrinsic 
complexity of traffic in the airspace using entropy [15]. 

An important question regarding the outcomes of any 
study utilizing driving simulators is: To what extent can the 
results and conclusions be extended to on-road or naturalistic 
driving scenarios? An important outcome of the earlier work 
cited is that steering entropy for on-road trials was less than 
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that obtained using a driving simulator. This result is 
explained by a subject’s rational reallocation of mental 
resources based on the difference in perceived risk between 
the two driving situations. In contrast to simulator driving, 
subjects focus more on driving and less on operating the cell 
phone while driving on-the-road. The implications are 
significant for anticipating evaluation of the current approach 
under naturalistic driving conditions. Increased inattention to 
the texting task should make it easier to detect distracted 
driving using the proposed classification method. This could 
translate to more rapid detection and/or higher reliability. 
This is very encouraging given the ROC curves presented 
above.  

The utility of this approach is that it would enable 
engineering controls for mitigating distracted driving. The 
actual mitigating action could take on a range of forms 
graded for the particular situation, degree of distraction, and 
evolving legislative and liability issues. Examples of 
increasing levels of intervention are warning the device user, 
disabling texting functionality, switching to voice 
recognition texting, etc. Obviously the nature of the 
mitigation and the user groups will depend on a host of 
rapidly evolving market demands including, but not limited 
to, legislation and the liability landscape for carriers, 
automotive manufacturers, and the broader communications 
industry. 
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