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Abstract 
Complex networks play an important role in modern 
societies. Their failures, such as power grid blackouts, 
would lead to significant disruption of people’s lives, 
industry and commercial activities, and result in massive 
economic losses. Reliable operation of these complex 
networks is an extremely challenging task. None of the 
complex network operations are fully automated; human-in-
the-loop operation is critical. Given the complexity 
involved, there may be thousands of possible topological 
configurations at any given time. During an emergency, it is 
not uncommon for human operators to consider thousands 
of possible configurations in near real-time to choose the 
best option and operate the network effectively. In today’s 
practice, network operation is largely based on experience 
with very limited real-time decision support, resulting in 
inadequate management of complex predictions and the 
inability to anticipate, recognize, and respond to situations 
caused by human errors, natural disasters, or cyber attacks.  
 A systematic approach is needed to manage the complex 
operational paradigms and choose the best option in a near-
real-time manner. This paper applies predictive analytics 
techniques to establish a decision support system for 
complex network operation management and help operators 
predict potential network failures and adapt the network in 
response to adverse situations. The resultant decision 
support system enables continuous monitoring of network 
performance and turns large amounts of data into actionable 
information. This paper presents examples with actual 
power grid data to demonstrate the capability of a proposed 
decision support system.  

Introduction   
Electric power grids, gas pipeline systems, 
telecommunication systems, and aviation networks are just 
a few examples of complex networks that are important in 
modern society. Their failure, such as power grid 
blackouts, would lead to significant disruption of peoples’ 
lives, industry and commercial activities, and result in 
massive economic losses (DOE 2004). Operation of these 
complex networks is an extremely challenging task as they 
all have complex structures, wide geographical coverage, 
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and complex data/information technology systems. The 
complex networks also exhibit highly dynamic and 
nonlinear behaviors with numerous network configurations 
and are affected by a number of external factors. The 
external factors include physical attacks, cyber threats, 
human errors, and natural disasters. None of the complex 
network operations are fully automated; human-in-the-loop 
operation is critical. During an emergency, it is not 
uncommon for human operators to consider thousands of 
possible configurations in near real-time to choose the best 
option and operate the network effectively. In today’s 
practice, network operation is largely based on operator’s 
experience with very limited real-time decision support. 
Because of the complex nature of large networks (e.g. 
complex structure and wide geographical coverage), large 
amounts of data and information have to be processed to 
gain adequate situational awareness and the ability to adapt 
to emergency situations. Managing this complexity is 
emerging as a critical issue in complex network operation. 
Lack of complexity management often results in the 
inability to anticipate, recognize, and respond to situations 
caused by human errors, natural disasters, and cyber 
attacks and inadequacy in predicting the effect of 
operational decisions. 
 In this paper, we apply visual analytics techniques to 
enhance the processing of large amounts of operational 
data. Previously, visual analytics has been successfully 
applied to process massive amounts of data and extract 
useful information from this data (NVAC 2008). In this 
paper, we adapt the visual analytics techniques to convert 
massive amounts of operational data into actionable 
information. The resultant application enables prediction of 
network status, enhances the response to network 
operational requirements and provides real-time decision 
support to network operators. The application has been 
successfully demonstrated with actual power grid models 
and data. In the next section, a brief overview of the power 
grid operation is presented to address the needs for real-
time decision support. The following section defines the 
problems in power grid operations and the process of 
applying visual analytics techniques. The application aims 
to convert data into information and present the 
information in an operator-friendly manner as a contoured 
geographic map. With the contoured map as the basis, the 



 

 

next section develops a method to predict network security 
trends based on graph analysis. In both sections, actual 
power grid examples are presented to demonstrate the 
contoured mapping and graph trending analysis. The paper 
is then concluded with closing remarks and 
recommendations for future work.     

Overview of Power  Gr id Operation  
Recent power grid blackouts, such as the west coast 
blackouts of 1996 (Kosterev, Taylor, Mittelstandt 1999) 
and the east coast blackout of 2003(DOE 2004), brought 
significant attention to the reliability of power grids. How 
to predict and prevent or mitigate such blackouts has been 
a central topic in the area of power system research, and 
has also become one of the primary focuses of the DOE 
Office of Electricity Delivery & Energy Reliability (DOE-
OE) (Congress 2005). Power grid operation involves 
complex computational processes with advanced power 
grid models. Figure 1 shows a functional structure of real-
time power grid operation (Huang et al. 2007). The 
processes investigated in this paper are State Estimation 
and Contingency Analysis. The “State Estimator” typically 
receives telemetered data from the supervisory control and 
data acquisition (SCADA) system every few seconds and 
extrapolates a full set of grid conditions for operators based 
on the grid’s current configuration and a theoretically 
based engineering power flow solution. The output of the 
State Estimator drives other operation functions including 
Contingency Analysis. Contingency Analysis studies 
“what-if” conditions in anticipation of potential power grid 
failures. Contingency Analysis identifies operation 
violations if one or more elements fail. The violation 
results are then presented to operators for review and 
decision-making to determine remedial actions if 
necessary. The burden of decision-making all falls on the 
shoulders of the operators.  
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Review 

 

 
Figure 1. Functional structure of power system operations  
 The operator’s decision-making process is the key step 
in ensuring power grid reliability. The operating standards 
of the North American Electric Reliability Corporation 
(NERC) require that the loss of any single element in the 

power grid should not cause system instabilities; this is 
referred to as the N-1 reliability criteria (NERC 2005). 
Contingency analysis is continually run in an interval of 
seconds to minutes to determine the impact of equipment 
failures. If the loss of one or more elements does not result 
in any limit violations, then the system is said to be secure 
for that contingency. The contingencies that result in 
violations of operating limits are flagged and placed in a 
list for the operators to inspect. NERC mandates that 
operators take actions to mitigate the situation in a timely 
manner when there are contingency violations. 
 Because it is not uncommon for several hundred 
contingencies to be examined, conveying this information 
to system operators in a meaningful and easy-to-
understand way is a fundamental challenge. Because of the 
size of modern power grids, the number of contingencies to 
be studied can be very large. For example, the western 
North American high-voltage power grid has about 20,000 
elements. Failure of any one element, i.e. N-1 
contingencies, would constitute 20,000 contingency cases.  
“N-2” contingencies would be in the order of 108. Actual 
grid blackouts often involve the failure of multiple 
elements (N-x contingencies). State-of-the-art commercial 
tools use a tabular form to display each of the contingency 
violations, as shown in Figure 2. 

 
Figure 2. Tabular representation of violation data in the state-of-
the-art power grid operation tool  
Each violation of operating limits is a row in this tabular 
form, without showing geographical information and the 
degree of severity. When there are only a few 
contingencies where the system is not N-1 secure, the 
method of tabular display is adequate. But when the system 
is heavily stressed, and there are significantly more 
contingencies violations, the tabular method of display is 
rapidly overloaded. It is then impossible for an operator to 
sift through the large amounts of violation data and 
understand the system situation within several seconds or 
minutes. However, it is in these situations that the 



 

 

operators would most need the information when the 
tabular representation techniques are saturated. 
 Because of the above-mentioned challenges in 
processing large volumes of data from the contingency 
analysis process, it is certain that we will need a second 
layer of analytical tools to analyze the data and extract 
useful and necessary information for power grid operators. 
This layer of tools not only provides information about the 
current power grid status, but they also analyze historical 
data and generate system trending information to enable 
predictive capabilities. With this kind of real-time decision 
support, the operators will then have no need to review the 
massive amount of data but be presented with actionable 
information of the current status and system trends.  
 The next two sections present the application of visual 
analytics and graph trending techniques to construct such 
decision support tools for power grid operators. This 
decision support system will be able to fully utilize the 
contingency analysis results to predict potential problems 
of the power grid and adapt the power grid to adverse 
situations. Though this paper presents power grid 
examples, the decision support system can be extended for 
complex network operations in other industries. Examples 
include gas pipeline systems, telecommunication systems, 
and aviation networks.  

Risk Assessment of Contingency Violations 
Contingency violations are defined as operational 
parameters (i.e. power on a line or voltage at a substation) 
exceeding their limits. For example, the power that a 
transmission line can transfer has a limit due to thermal or 
stability constraints (NERC 1997). Exceeding the limits 
will result in equipment failure and/or system instability. 
Thus, the risk of a transmission line can be defined as the 
relative loading R% with respect to the limit Pmax:   
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where “ik” denotes the ith line of the kth contingency.   
 The risk of a substation can be defined similarly with the 
only difference being that the substation voltage has both 
lower and upper limits (Vmin and Vmax).   
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where “ik” denotes the ith substation of the kth 
contingency.   
 For each contingency k, the risk of lines and substations 
can be categorized as: 
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where RT% is the pre-specified alert risk level.  
 Compared with the tabular form shown in Figure 2, the 
improvement is that (1)-(3) convert the contingency data 
into quantitative risk levels, which indicate the severity if 
an operational parameter exceeds a limit. This conversion 
also goes beyond the violation data. Risk levels are defined 
as how close the operational parameters are to the limit, 
even if there are no violations, as shown in (3).  
 Defining the risk levels of individual elements (lines and 
substations) is the first step in converting contingency data 
into actionable information. Each contingency will 
generate a set of risk levels as defined in (1)-(3). If a total 
of K contingencies are analyzed, there will be K sets of risk 
levels. Across all of the contingencies, the risk level of the 
ith element can be defined statistically as the maximum, 
summation, or mean of the individual risk levels. Using the 
maximum as an example is shown below:   
 

( ),%max% iki RR =  k = 1,2,…,K (4) 
 
 Two questions remain: How to present the risk levels in 
an easy-to-understand manner? And how to define risk 
levels for the whole network and for regions of interest? 
The next section presents an approach based on visual 
analytics techniques.  

Visual Analytical Application 
Failure of one element in a power grid could propagate into 
other areas of the grid. Given the different geographic 
locations of lines and substations and the heterogeneous 
structure of a power grid, the propagation would likely be 
different, and a same risk level of different lines or 
substations would have various levels of impact to the 
power grid. We assume that higher risk levels and risks in 
dense areas would have a larger impact on the reliability of 
the system. We further assume that the same risk level 
would propagate into the same radius of a geographic area, 
which is determined using visual analytics techniques. The 
result of this application is a contoured map with the color 
indicating the risk levels. Then it is very easy for operators 
to see the vulnerable areas of the grids without the need to 
sift through individual numbers.  

Visual Analytics-Based Contoured Maps  
The visualization starts with assigning the lines and 
substations the risk level as defined in (4) on the 
geographical map of the power grid. Then the propagation 
is visualized as fading colors from the center as shown in 
Figure 3. The impact area of a substation has a circular 
shape, while a line has an elliptical shape. Individual risk 



 

 

areas are then superposed to form the collective risk areas. 
The same superposition is done among multiple 
contingencies as well.  

Superpose

 
Figure 3. Collective risk area using fading colors and 
superposition of individual risk areas 
 The implementation uses a hash table to store all the 
pixels of the lines and substations. Each pixel has a value 
determined by the risk level of the line or substation. When 
lines are crossing, the larger value remains in the table so 
the highest risk is represented (Figure 4).  
 

 
Figure 4. Hash table for storing pixels 
 The next step is to create the color filter for displaying 
the resultant collective risk. The filter is circular shaped 
with values conforming to that of a Gaussian curve (Figure 
5). The Gaussian curve is normalized so that the peak 
height is equal to one. The radius of the filter is a 
parameter that is set by the user. We define the Gaussian 
curve to have three standard deviations within one radius. 
Next we iterate through all the pixel points associated with 
the lines and substations stored in the hash table. 

 
Green                Gray                Red                Gray                Green 

Figure 5. Gaussian color filter and green/gray/red color map. 

At each one of these points, the value in the table is 
multiplied by the Gaussian curve. These values are then 
added to an output graphic matrix representing the final 
contour. The outcome of the Gaussian filtering is the 
output matrix defining each point in the map with a 
floating point number. Then these floating point numbers 
are assigned to a color map to obtain the final contour. In 

order for it to be easy to interpret, a green/gray/red color 
map is selected. Considering (3), the color map can be 
understood as green, gray and red correspond to three risk 
categories – safe, alert and violation.  
 The final visual representation uses HaveGreen (Wong 
et al. 2006) as the application framework, which provides 
the interface for navigating and zooming over the power 
grid. The graphics is developed in C# using Managed 
DirectX. An example of the color contoured map is shown 
in Figure 6. This example uses actual model and data of the 
western North American power grid. 200 contingencies are 
analyzed, and 200 sets of risk levels are overlaid on the 
single map to visualize the collective risk of the 
contingencies on the system security. The red color (shown 
as darkest areas in the figure) indicates vulnerable portions 
of the power grid and brings attention to network 
operators. Compared with Figure 2, this color contoured 
map has the obvious advantage of bringing information 
rather than raw data to operators.  

 
Figure 6. Western North American power grid risk map with 200 
overlaid contingency analysis results  

System and Regional Risk Levels  
The color contoured map visually shows the risk across the 
network. This section employs statistical analysis methods 
to quantitatively calculate the risk level R% of the network 
and individual regions. The risk level is defined as a 
combination of arithmetic average and geometric average.  
 

γη 21% aaR +=  (5) 
 
where a1 and a2 are weighting constants. η and γ are the 
arithmetic average and geometric average, respectively. 
The statistics is performed over all the pixel points on the 
map. Each pixel has a color value corresponding to the risk 
level at that pixel. If we categorized the pixels into M 
categories and there are Nm pixels in each category with the 
same color value (R%)m, the arithmetic and geometric 
averages are calculated as follows: 
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 For regional risk levels, the same process can be applied 
but only the pixels in the region are considered.  
 Figure 7 shows the risk levels of the western North 
American power grid over a morning load pick-up period. 
When the system total power consumption is at a low level 
(the beginning of the period), increasing load does not 
increase risk levels as much as when the total load is at a 
higher level toward the end of the period. This is consistent 
with operational experience.   
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Figure 7. System risk level and stress level over time 
 It is worth pointing out that the same statistical analysis 
can be performed on the risk levels calculated from (4). 
The advantage of performing the analysis in the visual 
space is that the propagation and collective risk areas are 
considered, which is more reasonable and realistic for 
actual power grids.  

Visual Trending Analysis  
Converting the data into risk levels and visualizing them as 
contoured maps enables visual network management, 
which makes it easier to gain situational awareness and 
recognize problems. Operators would now have more time 
to focus on urgent issues rather than spending time 
analyzing unimportant data. Operators could also observe 
the evolving patterns of the visual maps to determine 
network reliability and security trends. For example, an 
increase in color intensity and size of the risk contour 
would indicate a deteriorating network situation that would 
raise awareness for the operator. In a simple network, 
evolving patterns are simple to understand and visual 
examination of the maps would be adequate to determine 
trends. However, in a complex network, evolving patterns 
can be complicated and the number of the patterns can be 

numerous at any given time. Figure 8 shows a simpler case 
with a few obvious red areas and several fuzzy gray areas. 
All areas evolve in time. An operator may be able to 
recognize the pattern of areas 2 and 3 merging into one 
single area. But it would be very difficult to determine how 
the other areas are evolving and how to quantify the 
implications. And more importantly is to use the results of 
the contingency analysis to determine the trend and predict 
the network status in the future. 
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Figure 8. Power grid risk evolving patterns 
 To enable this predictive capability, we developed a 
method for visual trending analysis. The method is based 
on the system and regional risk levels as defined in (5). 
The trend is obtained by fitting a curve to historical risk 
levels of the network or regions, and extrapolating to 
predict the future system situation, as shown in Figure 9. 

 
Figure 9. Illustration of visual trending analysis 
 Complex evolving patterns may exist in a network. 
Some of complex patterns are shown in Figure 10. Two 
areas can “merge” into one, or one can “split” into two, or 
one area “steals” a portion of another area.  
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Figure 10. Complex evolving patterns of network risk impact 
areas 
 To automatically identify all the complex patterns, the 
actual implementation of visual trending analysis combines 
structural analysis and statistical analysis, as shown in 
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Figure 11. Statistical analysis is used to calculate the risk 
indices of individual areas, while the structural analysis 
uses a relation matrix to capture the relationship between 
areas, i.e. how two areas overlap or differ at the pixel level. 
The number in the relation matrix is the sum of the risk 
level for each pixel in the overlapped area, except the last 
row and last column are for the adjacent area. The numbers 
in Figure 11 correspond to the case shown in Figure 8. This 
trending analysis approach has been able to identify all the 
complex evolving patterns shown in Figure 10. 
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Figure 11. Combination of structural analysis and statistical 
analysis using a relation matrix for visual trending analysis.  
 The green dashed line in Figure 7 is the predicted system 
risk level, each point based on the three prior risk levels. It 
can be seen that the prediction is reasonably close to the 
actual system risk level (blue line). Figure 12 further shows 
the trends for the five most critical regions in the power 
grid for this example, corresponding to the same system 
conditions in Figure 7. The regional risk trends are more 
extreme than the system trend. The system trend is 
relatively flat as changes in different regions may cancel 
each other’s impact. Therefore it is important to observe 
regional trends to recognize potential regional issues.  

 
Figure 12. Example of regional risk trends of the western North 
American power grid 

Conclusion and Future Work 
This paper described visual analytics techniques that were 
successfully applied to complex network operations by 
converting large amounts of operational data into 
actionable information. Operational data are translated into 
risk levels and then visualized as a color contoured map. 
This application will greatly improve real-time decision 
support for network operations. Operators can quickly gain 

situational awareness of the network without sifting 
through large amounts of raw data. Predictive capability is 
established by analyzing the trend of the network risk level 
with an approach that combines structural analysis with 
statistical analysis. Examples using actual models and data 
of the western North American power grid demonstrate the 
validity of the predictive analytics.  
 Given that these results were obtained in a research 
environment and based on simulation, an important step to 
bring these proposed methods into practice will be 
demonstrating this approach in an actual power system 
environment and evaluating the decision support tool with 
experienced operators. Further work should also focus on 
developing methods to improve the prediction by including 
probability to enable better forecasting for network 
operations.  This forecasting capability refers to multiple 
future paths, each of which has a certain probability. 
Another enhancement is helping operators decide the 
outcome of various remedial actions through an interactive 
analysis function.  This interactive analysis would identify 
remedial actions that can turn the “red” to “green” on the 
contoured map. Some of this work is ongoing and results 
are expected to be published in the near future.  

Acknowledgement 
This work is supported by the Information and 
Infrastructure Integrity Initiative of the Pacific Northwest 
National Laboratory. The Pacific Northwest National 
Laboratory is operated by Battelle for the U.S. Depart of 
Energy under Contract DE-AC06-76RL01830. The authors 
would like to extend special thanks to Ning Zhou, Jeff 
Dagle, Jim Thomas and Mark Hadley, all with Pacific 
Northwest National Laboratory, for their insightful 
comments and support to this work.  

References 
Congress U.S. 2005. Energy Policy Act of 2005. URL: 
http://www.doi.gov/iepa/EnergyPolicyActof2005.pdf. 

DOE. 2004. U.S.-Canada Power System Outage Task Force: 
Final Report on the August 14, 2003 Blackout in the United 
States and Canada: Causes and Recommendations. 

Huang, Z., Guttromson, R., Nieplocha, J., and Pratt, R. 2007. 
Transforming Power Grid Operations via High-Performance 
Computing. Scientific Computing April. 

Kosterev, D.N., Taylor, C.W. and Mittelstadt, W.A. 1999. Model 
Validation for the August 10, 1996 WSCC System Outage. IEEE 
Trans. Power Syst. 14(3): 967-979. 

The National Visualization and Analytics Center (NVAC). 2008. 
Accessed 12/2008. URL: http://nvac.pnl.gov/.  

North American Electric Reliability Corporation (NERC). 1997. 
NERC Planning Standards.  
URL: www.nerc.com/pub/sys/all_updl/pc/pss/ps9709.pdf. 



 

 

North American Electric Reliability Corporation (NERC). 2005. 
Transmission System Standards – Normal and Emergency 
Conditions. Accessed 12/2008. URL: www.nerc.com. 

Wong, P.C., Chin, Jr., G., Foote, H.P., Mackey, P.S., and 
Thomas, J.J. 2006. Have Green – A Visual Analytics Framework 
for Large Semantic Graphs . In IEEE Symposium on Visual 
Analytics Science and Technology. Baltimore, MD. 


