

Advanced Aqueous Redox Flow Battery

Wei Wang, Bin Li, Zimin Nie, Murugesan Vijayakumar, Guosheng Li, Jun Liu, and Vincent Sprenkle

Pacific Northwest National Laboratory

TMS 2015

March 15~19th, 2015

Redox flow batteries (RFB)

Proudly Operated by Battelle Since 1965

Negative (Li_x Host 2) Positive (Li_x Host 1) Non-aqueous Liquid Electrolyte Current Current

Why RFB?

High safety

- ♦ Na-S Battery: NGK 2MW system fire in September 21 of 2011.

Separation of reactive materials Easy thermal management

An integrated approach to advance the RFB technology

Proudly Operated by Battelle Since 1965

Review of RFB R&D at PNNL

Proudly Operated by Battelle Since 1965

MVRB License UET Company X

MVRB License Wattjoule

Patents granted

2009

2010

2011

2012

2013

2014

Program start

Paper published

Fe-V License Aartha USA

New Chemistry UET first commercial system

Discovery

IP

R&D

Demo

License: UET/ X / Aartha/Wattjoule

Deployment

Major challenge of RFB technology

Proudly Operated by Battelle Since 1965

Major Challenge of the current RFB technology: low energy density

120MWh system, peak power ~15MW. Each tank holds 1800m³ of electrolyte.

- Large form factor/footprint
- Limited application

High energy density Zn-Polyiodide aqueous RFB

Proudly Operated by Battelle Since 1965

Solubility of ZnI_2 is 7M in water \rightarrow theoretical energy density ~322Wh/L

Identify high solubility redox active species

$$I_2(s) + I^- \Leftrightarrow I_3^- \qquad K \approx 720 \pm 10(298K)$$

Positive:
$$3I^- \stackrel{Charge}{\longleftrightarrow} I_3^- + 2e^-(E_0 = 0.536V)$$

Negative:
$$Zn^{2+} + 2e^{-} \longleftrightarrow_{Discharge} Zn(E_0 = -0.7626V)$$

Overall:
$$Zn^{2+} + 3I^{-} \stackrel{Charge}{\longleftrightarrow} Zn + I_3^{-}(E_0 = 1.2986V)$$

Characteristics of the Zn-I RFB

- Ambipolar electrolyteBoth anion and cation are active species.
- ➤ Bifunctional electrolyte

 Active species can act as charge carrier.
- ➤ High energy density
- ➤ High safety: PH value: 3~4
 No strong acid
 No hazardous materials

Electrochemical performance

CV of 0.085 M ZnI₂ on a glassy carbon electrode at the scan rate of 50 mV s⁻¹.

Typical charge-discharge curves at 1.5 M ZnI₂ at a current density of 20 mA cm⁻².

Electrochemical performance

Proudly Operated by Battelle Since 1965

Charge/discharge curves for the cell with 5.0 M ZnI₂ and Nafion 115 as membranes operated at the current density of 5 mA cm⁻².

The charge and discharge energy density as a function of the concentration of I⁻. The inset lists concentration vs. energy density of several current aqueous redox flow battery chemistries for comparison.

Cycling performance

Efficiencies of the cell with 3.5 M ZnI₂ and Nafion 115 as membranes under the current density of 10 mA cm⁻².

Polyiodide species in the catholyte

Raman spectra of catholytes at different state of charges (SOCs) and discharge from 0 to 100% SOC.

Delayed Discharge

Proudly Operated by Battelle Since 1965

Voltage profiles of the flow cell test with different rest time.

Temperature stability of the catholyte

Proudly Operated by Battelle Since 1965

Temperature stability (off-line) of 100% SOC catholytes

Znl ₂ (M)	50°C	25°C	0°C	-10°C	-20°C
3.5	stable	stable	ppt	ppt	ppt
2.5	stable	stable	ppt	ppt	ppt

NMR and DFT study of the catholyte solution chemistry

$$[Zn^{2+}.I_3^{-}.5H_2O]^+ \leftrightarrow [Zn^{2+}.I^{-}.5H_2O]^+ + I_2(s)$$

Stablize the catholyte through coordination chemistry

Proudly Operated by Battelle Since 1965

Temperature stability with alcohol additives

	'nl ₂ 'M)	Vol% EtOH	50°C	25°C	0°C	-10°C	-20°C
3	3.5	25	stable	stable	stable	stable	stable
		25 (EG)	stable	stable	stable	stable	stable
2	2.5	25	stable	stable	stable	stable	stable

Mitigation of Zinc dendrite growth

Dendrite growth in the flowing electrolyte

Morphologies of zinc dendrites after charge for the cells with 3.5 M ZnI₂ operated at the current density of 10 mA cm⁻² (**A**) in the static cell and (**B**) the flow rate of 100 mL min⁻¹.

Alcohol complexing ameliorate the dendrite growth

Morphologies of zinc dendrites after charge (**A**) without EtOH and (**B**) with EtOH in the electrolytes.

(A)

Summary

- ➤ High energy density Zn-I RFB (>150Wh/L) has been designed and demonstrated
- Alcohol molecules are found to complex with the Zn ions, which improve the temperature stability and ameliorate Zn dendrite growth.

Future work

- Investigation of the Zn dendrite formation mechanism and development of mitigation methods.
- Improve the kinetics of the polyiodide redox reaction.

Acknowledgements

- ➤ US Department of Energy's Office of Electricity Delivery and Reliability Dr. Imre Gyuk, Energy Storage Program Manager.
- Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830.

Effect of the Ethanol and anolyte volume

Proudly Operated by Battelle Since 1965

Voltage profiles of a flow cell test on a 2.5M ZnI₂ electrolyte with and without ethanol.

Voltage profile of flow cell tests with different analyte volumes.

Mass spectrometry analysis of catholyte

Mass spectrometry analysis of (**a**) pristine and (**b**) EtOH-added catholyte at fully charged condition. The presence of ZnI₃⁻ and molecular triiodide confirms our NMR and DFT-based analysis.