

Building Energy Technologies

March, 2010

Contacts: Dr. Ward TeGrotenhuis ward.tegrotenhuis@pnl.gov (509)372-2268 PACIFIC NORTHWEST NATIONAL LABORATORY

Dr. Kevin Drost <u>kevin.drost@oregonstate.edu</u> (541) 713-1344 OREGON STATE UNIVERSITY

Building Energy Technologies

• HVAC

- Heat-activated heat pumps
 - Expander/compressor cycle
 - Absorption cycle HP
 - Adsorption cycle HP

Advanced heat transfer

- Boiling heat transfer
- Air-side heat transfer

Advanced system concepts

- □ CCHP: co-gen power and
 - cooling
- Compact distributed systems
- Desiccant cooling
- Concentrated solar cooling
- Energy recovery ventilator

• Envelope

- Wavelength-selective coatings
- Appliances
 - Heat pump dryer
 - o Heat pump water heater
- Energy
 - PV solution deposition
 - Fuel cell technologies

Pacific

Northwest

Energy storage - batteries

- Established technology and/or capability
 Has been proposed
- Potential application of microtechnology

Heating, Ventilation and Air Conditioning Heat-Activated Heat Pumps

Heating, Ventillation, and Air Conditioning (HVAC) Heat-Activated Heat Pumps

- Use heat to provide cooling, heating, and power
 - Burn a fuel, such as H_2 , natural gas, propane, or military fuel
 - Waste heat source—engine exhaust, fuel cell reject heat, etc...
 - Solar thermal—need >100°C, preferably >170°C
- Three systems under development
 - Expander/Compressor cycle—coupled ORC and vapor compression
 - Can provide power, cooling, and/or heating
 - 1.5 ton demonstration system currently in testing (U.S. Army)
 - Absorption heat pump—ammonia-water cycle
 - Can provide cooling and/or heating
 - 1.5 ton demonstration system scheduled for Summer, 2010 (U.S. Army)
 - Adsorption heat pump—ammonia carbon
 - Can provide cooling and/or heating
 - Rapid cycle thermal swing modeling showing COP_{cool} >1.1 and COP_{heat} > 2.4

HVAC: Heat-Activated Heat Pump

Expander/Compressor Cycle

Concept

- Coupled organic Rankine cycle (ORC) and vapor compression.
- Mechanical linkage of expander, compressor, and motor/generator allows for any combination of cooling, heating, or power.
- Co-fired with heat and electric power for highly flexible load-following system.

Progress & Status

- System models project COP>1.1 at military conditions of 50°C ambient.
- Developed high performance scroll expander technology (see below).
- Incorporated advanced microchannel heat exchangers to improve performance.
- Developed 5.3 kW (~1.5 tons) cooling system, currently in testing.
- Point of Contact
 - Prof. Rich Peterson, richard.Peterson@oregonstate.edu

ONAM

HVAC: Expander/Compressor Cycle Technology Development – Scroll Expanders

- Based on commercial, high volume production scroll technology.
- Measured near 100% volumetric efficiency in preliminary testing (no blow-by of working fluid).
- Measured isentropic efficiency and power output in test rig show efficiencies approaching 80%.
- Packaging and housing
 - Provides output shaft to measure power and to connect to compressor unit.
 - Fully sealed to allow pressurized working fluid.

HVAC: Heat-Activated Heat Pump Expander-Compressor Cycle Heat Pump

Competition

- Commercial electric heat pumps
- Absorption (solution) cycle heat pumps
- No commercial heat pumps in U.S. for residential and smaller heat-activated cooling
- **Advantages**
 - High-efficiency, compact equipment
 - Flexible co-generation of power and cooling/heating
 - Utilize growing supply of natural gas reserves

\triangleright Next steps

- Test system at designed out door temperature of 120 °F
- Replace current oil heater loop with heat recovered from the exhaust of a diesel engine
- **Intellectual Property**
 - Patent application in final stages of review by the U.S. patent office. Most claims accepted.

Assembled 5.3-kW E/C system

viewed from cool air discharge side

Breakthrough Institute

HVAC: Heat-Activated Heat Pump

Absorption Cycle Heat Pump

Northwest

RORATO

HVAC: Heat-Activated Heat Pump

Absorption Cycle Heat Pump

HVAC: Heat-Activated Heat Pump

Adsorption Cycle Heat Pump

NASA Mars CO2 compressor

Competition

- Commercial electric heat pumps
- Absorption (solution) cycle heat pumps
- No commercial heat pumps in U.S. for residential and smaller heat-activated cooling
- Advantages
 - High-efficiency, compact equipment
 - Scalable from <1 ton up to commercial building</p>
 - Utilize growing supply of natural gas reserves
 - Low corrosivity enabling aluminum construction
 - No solution pump
- Next steps
 - Bed fabrication and system demonstration
 - Multi-port valve development
- Partners
 - ATMI (carbon monolith sorbents)
- Intellectual Property
 - Wegeng, R.S., et al., U.S. Patent No. 6,974,496, December 2005.
 - Wegeng, R.S., et al., U.S. Patent 6,746,515, June 2004.
 - Wegeng, R.S., et al., US Patent 6,630,012, October 2003.

Welded aluminum test assembly

Heating, Ventilation and Air Conditioning Advanced Heat Transfer

HVAC: Advanced Heat Transfer Nano-Scale Coatings for Enhanced Boiling

Concept

- Nano-textured surfaces can enhance boiling heat transfer coefficient by about an order of magnitude.
- Surface created by cost-effective micro-assisted nanodeposition (MANDTM) process.
- Progress & Status
 - Proof-of-principle testing demonstrating higher heat transfer coefficient and higher critical heat flux.

Advantages

- Enhance HVAC coefficient of performance
- Lighter, more compact evaporators

Next Step

- Demonstrate prototype scale device
- Intellectual Property
 - U.S. Pat. App. 12/709,266, Filed 2/2010 (OSU/PNNL)
 - ➤ U.S. Pat. App. (MANDTM) (OSU)
- Point of Contact
 - Terry Hendricks, terry.hendricks@pnl.gov

HVAC: Advanced Heat Transfer

Air-side Heat Transfer with 3-D Periodic Structures

Concept

- Use unique 3-D periodic microstructures to reduce gas heat transfer resistance by 45% compared to standard fin-plate structures.
- Cost-effective manufacturing approaches identified.
- Progress and Status
 - Concept stage with in-house expertise
- Advantages
 - Enhanced HVAC coefficient of performance
 - Lighter, more compact, higher performing evaporators and condensers
- Next Steps
 - Proof-of-concept manufacturing
 - Demonstrate prototype-scale device
 - Develop intellectual property
 - Point of Contact
 - Terry Hendricks, terry.hendricks@pnl.gov

cts gh

Heating, Ventilation and Air Conditioning Advanced Systems Concepts

Advanced System Concepts

CCHP: Co-Functional Power / Cooling Systems

Concept

- Produce combined power and cooling utilizing waste heat or by combusting fuel.
- Integrate a thermoeletric generator (TEG) power module as a topping cycle with a heat-activated cooling technology as a bottoming cycling.
- Heat coming from the TEG combined with hot exhaust gas is used to run the cooling system effectively achieves 100% energy conversion efficiency in the TEG. Potentially saves 20 to 30% in fuel usage in forward deployed applications.

Progress and Status

- Being developed for battlefield applications, stationary and mobile, with various heat waste heat sources including diesel generator exhaust.
- Currently developing co-functional integration of 3 power & cooling technologies:
 - Advanced thermoelectric (TE) power system
 - Organic Rankine cycle (ORC) cooling system
 - Microchannel heat exchangers
- Currently testing a demonstration system designed for ~100 W power generation & 5.3 kW cooling capacity
- Point of Contact
 - Terry Hendricks, <u>terry.hendricks@pnl.gov</u>

Hot Exhaust

Stream

Thermal Resistance

Thermal

Resistance

Q_{in}

Heat in from

Cooling Space

Spent

Exhaust

ligh Temperature HE

Thermoelectric Generator

ΥĻ

Expander/Compressor

Heat Pump

 $\mathsf{Q}_{\mathsf{in},\mathsf{H}}$

Q_{out}

Q_{tot,out}

Electrical Power

Waste Heat for

Total Energy Recoverv

Heat Rejection

to Surroundinas

Military Co-Functional Power / Cooling **Systems** TEG Power System Uses MicroChannel Heat Exchangers Stainless Steel Air HX On Hot-Side Aluminum R245fa HX on Cold-Side 16-22 TE Modules ORC Boiler Uses MicroChannel Heat Exchangers E BE E BE E BE E BE High-Temperature Bi₂Te₃ Modules First-Ever 320°C Bi₂Te₃ Modules **TEG Power System** System Size Microtechnology Enables Smaller System **ORC Boiler** Dimensions: 30" X 30" X 19" ➢ Weight: ∼100 kgs Next Steps System Testing **Co-Functional System** Pacific ONAMI Microproducts Oregon State Northwest Breakthrough

Institute

Other 'Drawing Board' Concepts

• Distributed Heat-activated Heat Pumps

- Distributed HVAC replaces a single large central HVAC unit with zonal or distributed HVAC units.
- Advantages: reduces ducting and associated with central system cycling losses, enables zonal heating and cooling, lower building capital cost (no ducts will reduce a story height by 1 m)

Integrated Heat-activated Heat Pump and Desiccant Dehumidification

- Utilize waste heat from a heat-activated heat pump to regenerate the desiccant of a dehumidification system—heat pump topping cycle and desiccant bottoming cycle.
- Advantages: No need to cool air to desired dew point allows higher evaporator temperature, higher heat pump Carnot efficiency, and increased energy efficiency.

Concentrated Solar HVAC

- Leverage MBI heat actuated HVAC technologies and partner to obtain affordable single-axis solar trough collectors leveraging low-cost technology currently marketed for solar heating.
- Advantages: Increasing solar heat temperature increases HVAC efficiency and reduces HVAC and solar collector size and cost.

