First Light for the GammaTracker Handheld Radioisotope Identifier

Carolyn E. Seifert on behalf of the GammaTracker collaboration

27 October 2009 IEEE Nuclear Science Symposium, N14-1

GammaTracker basics

- GammaTracker is a rugged, high-resolution handheld radioisotope identifier for search, survey, and characterization of radioactive materials.
 - Incorporates eighteen 15x15x10 mm³ pixellated CdZnTe detectors based on University of Michigan Polaris technology to achieve high energy resolution performance
 - Uses peak-based isotope identification methods with common isotope library
 - Uses newly developed "method of intersections" to perform energy-selective Compton backprojection image reconstruction with no a priori knowledge of source distribution
 - Detects gamma rays from ¹¹³Cd(n,γ)¹¹⁴Cd to confirm presence of neutrons
 - Displays source direction to the user
 - Operates on two batteries for up to 6 hours
 - Weighs ~7 lb

GammaTracker design

GammaTracker is a complete system incorporated into a single handheld package.

User interface: how to navigate

- ► All menus driven from the joystick
- On/off button
- Mini-USB connection

The graphical interface is designed for ease of use for novice and expert users.

Detector performance as measured with Polaris varies significantly.

Technical specifications differed between eV Products and Redlen detectors.

Single-pixel energy resolution at 662 keV

The good, the bad, and the ugly: a sampling of detectors

Proudly Operated by Battelle Since 1965

Single-Pixel energy resolution in GT using benchtop power supplies

Single-Pixel energy resolution in GT using embedded GT power supplies

- Single-pixel energy resolution performance improved from 1.7% to 1.3% FWHM at 662 keV when system is on benchtop power.
- Noisy -2.0 and +1.5 V lines for ASIC on GT power board add ~9 keV noise (in quadrature).

Full energy spectrum (all events) in assembled GammaTracker prototype

¹³³Ba, ¹³⁷Cs, and ⁶⁰Co sources

Isotope identification process

Isotope identification of ¹³³Ba and ⁶⁰Co

See also N13-207 from this morning's poster session.

Proudly Operated by Battelle Since 1965

Isotope identification functions properly even when spectra are not correctly calibrated.

Battery life is predicted to be ~ 5 hours.

GammaTracker summary

- Demonstrated 1.9% FWHM single-pixel resolution at 662 keV (reduced from 1.3% on bench power).
- Isotope ID is robust even when spectra are non-ideal.
- New voltage regulation test circuit for ASIC biases demonstrates 90% reduction in line noise, which will improve energy resolution.
- Testing, evaluation, and optimization continues.

This work is performed for NNSA NA-22 Office of Nonproliferation Research and Development. ASIC development has also been supported by DOD Defense Threat Reduction Agency.

For more information or prototype demonstration, contact: carolyn.seifert@pnl.gov

