

Live-cell Vibrational Spectroscopy for Nanotoxicity and Nanomedicine

S. K. Sundaram, B. J. Riley, T. J. Weber, C. A. Sacksteder, B. J. Harrer Pacific Northwest National Laboratory Richland, WA 99352, USA

> J. M. Peterman Simplex Scientific Middleton, WI 53562, USA

Keynote at NanotechInsight2009, Barcelona, Spain March 28 – April 2, 2009

Battelle The Business of Innovation

Outline

- Introduction
 - Nanotoxicity
 - Need rapid screening
 - Biomarker discovery
- ATR FTIR spectroscopy
 - Transmission vs. ATR
 - Challenges and solutions
- Particokinetics Silica settling
- Silica settling on C-10 cell and interacting
- Connection to high level cellular processes
- Summary
- Acknowledgements

Health Effects

- The adverse health effects of particulate matter (PM) are well documented
 - Pulmonary
 - Cardiovascular
- Nanoparticle toxicity studies encompass complex processes
 - Partico/chemico/biokinetics
 - Composition-dependent
 - Intentional functionalization
 - Unintentional functionalization and contaminants
- Impossible to test every variable needs a rapid screening tool

Biomarkers of particulate matter toxicity may not adequately predict nanoparticle toxicity (Warheit et al., Toxicol. Sci. 77:117-125, 2004).

What method can be used to rapidly detect biologically active nanoparticles?

Need for Rapid and Cost Effective Global Profiling Technologies: Mode of Action is Unclear

Battelle

Comparison of Modalities

-IR Spectroscopy Modality

- Can track IR-observable changes in viable cells in real-time without the need for a specific probe
- Expected to provide a semi-quantitative if not quantitative way to know when to look for emerging biomarkers based on real-time monitoring of IR spectra
 Expected to provide new supporting bonding data by
- Expected to provide new supporting bonding data by correlating IR spectral data to fluorescence imaging data of known cell responses to model toxicants

-Fluorescence Imaging Modality

- Real-time sensitivity
- Dependent on availability of probes for pre-determined pathways/responses

Rattelle

Why Combine IR Spectroscopy and Fluorescence Microscopy Capabilities?

- Difficult to interpret IR spectra when the origin of the IR-observable signal is unknown
- Fluorescence capability can exploit a battery of established fluorescence-based assays to improve our understanding of IR observable signals
 - e.g., changes in pH, membrane fluidity, organelle status, etc...
- Fluorescence imaging modality will train the IR spectroscopy modality

Electromagnetic Radiation

- Infrared region:
 - Low energy radiation
 - Causes net change in the dipole moment
 - Changes amplitude of rotation, stretching, and bending of molecules
 - Non-symmetric bonds (H₂O, CH, CH₂, NH, NH₃)

Monitoring Cellular Response By FTIR Spectroscopy

- Cells make a good model system.
 - Respond to a wide range of materials
 - Provide complex response
 - Rapid screening
 - Cost effective
 - Animal welfare
- Emphasis placed on detecting biological <u>activity</u> of nanomaterial
 - No bias in the interpretation of biological activity
 - Detect biologically active nanoparticles without knowledge of cellular targets a priori
 - Do not need a contrast agent or specific reagent to detect biological activity
 - Near real-time (minutes)
- Prioritize materials for further investigation

Transmission vs. ATR Modes of FTIR Spectroscopy

Battelle

Battelle The Business of Innovation

ATR-FTIR Spectroscopy

ATR-FTIR Spectroscopy (continued)

ATR-FTIR Spectroscopy (continued)

Unheated plate

Heated plate

Battelle

A Dedicated FTIR Facility

Problems in ATR Measurements: How to Improve?

Battelle

Particokinetics - In Vitro

- Shape, size, and density affect settling rate.
- Settling time impacts timing/magnitude of response
- Media "dose" is different than dose to the cell

J. G. Teeguardian, P. M. Hinderliter, G. Orr, B. D. Thrall, and J. G. Pounds, "Particokinetics In Vitro: Dosimetry Considerations for In Vitro Nanoparticle Toxicity Assessments," *Toxicol. Sci.*, **95**, pp 300-312 (2007).

Particokinetics - Silica Particles

17

Particokinetics - Silica Particles (continued)

J. G. Teeguardian, P. M. Hinderliter, G. Orr, B. D. Thrall, and J. G. Pounds, "Particokinetics In Vitro: Dosimetry Considerations for In Vitro Nanoparticle Toxicity Assessments," *Toxicol. Sci.*, **95**, pp 300-312 (2007).

Battelle

Nano Silica Particles Settling

19

Battelle

Nano Silica Particles Settling

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-I. Ma, C. Boussard-Ple`del, J. Lucas, P. Lucas, D. Le Coq, M. R. Riley, J. H. Simmons, "Recent advances in chalcogenide glasses," *Journal of Non-Crystalline Solids*, **345&346**, pp 276-283 (2004).

Battelle

A. M. Melin, G. Perromat, G. Déléris. 2001. Effect of radical attach on bacteria: an application of FT-IR spectroscopy. Applied Spectroscopy 55:23-28. A. Pacifico, L. A. Chiriboga, P. Lasch, M. Diem. Infrared spectroscopy of cultured cells: II. Spectra of exponentially growing, serum-deprived and confluent cells. Vibrational

Spectroscopy. 2003, **32**, 107-122. A. M. Melin, A. Allery, A. Perromat, C. Bébéar, G. Déléris, B. B

Can We Detect Induced Biological Activity In Live Cells By FTIR?

Ratio Spectra To Identify Differences

Temporal Changes in RAW 264.7 Cells Treated With LPS

Macrophage Activation

- Wavenumber 1652 frequently modulated by endotoxin treatment
 - -C=O
- Endotoxin induces an inflammatory response in macrophages
 - reactive oxygen and nitrogen species (oxidative/ nitrative stresses)
 - Cox-2
 - iNOS
- Oxygen free radical damage to proteins results in protein carbonyl formation
 - -C=O

Hypothesis

Inflammatory processes can be detected in live cells by FTIR.

Wavenumber 1652 cm⁻¹ Temporal Profile Following LPS-Treatment

Battelle The Business of Innovation

Wavenumbers (cm⁻¹)

Cox-2 Transfected Cells Treated With Arachidonic Acid

Battelle

Carbonyl bond frequencies found in different functional groups

Group Frequency (cm ⁻¹)	Functional Group	Figure Reference
1610-1550 / 1420-1300	Carboxylate (carboxylic acid salt)	1
1680-1630	Amide	2
1690-1675/(1650-1600) ^a	Quinone or conjugated ketone	3
1725-1700	Carboxylic acid	4
1725-1705	Ketone	5
1740-1725/(2800-2700) ^b	Aldehyde	6
1750-1725	Ester	7
1735	Six-membered ring lactone	8
1760-1740	Alkyl carbonate	9
1815-1770	Acid (acyl) halide	10
1820-1775	Aryl carbonate	11
1850-1800/(1790-1740)	Open-chain acid anhydride	12
1870-1820/(1800-1775)	Five-membered ring anhydride	13
2100-1800	Transition metal carbonyls	14

^a Lower frequency band is from the conjugated double bond ^b Higher frequency band characteristic of aldehydes, associated with the terminal aldehydic C-H stretch

REFERENCE: J. Coates. Interpretation of infrared spectra, a practical approach in *Encyclopedia of Analytical Chemistry*. R. A. Meyers (Ed.), pp. 10815-10837. Copyright © John Wiley & Sons Ltd, Chichester. 2000.

Battelle

MWCNT-Treated RAW 264.7 Cells

Transformation and Analysis

Qualitative vs. Quantitative

- Mostly qualitative or semi-quantitative
- Quantitative analysis
 - -Water absorption
 - -Base-line shift
 - -Temperature control
 - -Atmosphere
- Chemometrics
- Mechanisms
- Integration for rapid screening

Summary

- Live cell FTIR spectroscopy is a promising tool to identify biologically active nanomaterials
 - Intuitive temporal patterns of regulation
 - Changes are complex
 - Complementary to genomic and proteomic approaches
- Functionalization monolayer chemistries support cell attachment and proliferation
 - Goal is to identify chemistry that is biologically inert or non-perturbing to improve ATR spectroscopy in live cell experiments
- Particochembiokinetics
 - Can be studied in near real-time
- Development of pathway- or process-specific spectral profiles is needed to enable spectra interrogation
 - Cell cycle, Cell death, Target pathways, Toxicants with well defined modes of action, etc.

Acknowledgements

- Cheryl Cejka for support under Technology Maturation program
- Joel G. Pounds, Ellyn Murphy, Environmental Biomarker Initiative (EBI)

- Support of LDRD project

 Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated by Battelle Memorial Institute for the United States Department of Energy under DE-AC06-76RLO 1830.