Glass Sealing of Solid Oxide Fuel Cells

Kerry Meinhardt, Dong-Sang Kim, Gary Yang, Matt Chou

PNNL-SA-41026

Pacific Northwest National Laboratory Operated by Estella for the U.S. Department of Energy

Introduction

SOFC Sealing requirements
Current PNNL seal properties
Current Sealing Issues
Future Improvements

SOFC Sealing Requirements

Close TEC match

- 12.5 x 10⁻⁶ /°C
- Stability in both Air and Reducing Environments
 - Po₂ range from 0.2 to 1x10⁻²¹
- Minimal Chemical Interactions with other cell components
 - Zirconia, Ferritic Stainless
 - Good bond strength
- Electrically Insulating (for most applications)
- Thermal Cycle
- Long term stability
 - Operating temperature is above Tg
- Seal at an appropriate temperature
 - Above 750°C and Lower than 950°C
- Ability to reheat to the sealing temperature without remelting the seal
 - May not be critical, but allows greater flexibility in assembly

Planar SOFC Seal Areas

Cell to Cell seal

- Keeps the reactant gasses separated
- Electrically Isolates
- PEN to window frame seal

Glass Selection

Potential Glass Systems

- P₂O₅ Based Glasses
 - Volatility and reaction with the anode
- B₂O₃ Based Glasses
 - Volatility in Wet Fuel Gas
- SiO₂ Based Glasses
 - Best Possible Candidate
- Alkaline earth (barium) aluminosilicate glasses
 - High Electrical Resistively,
 - High Thermal Expansion,
 - High Glass Transition Temperature
 - Glass Ceramic.

PNNL G-18 Glass

G-18 Composition

• Patents

US 6,430,966

US 6,532,769

Мо	%ا
----	----

BaO	35		
CaO	15		
Al ₂ O ₃	5		
SiO ₂	35		
B ₂ O ₃	10		

- (1.5Ba,0.5Ca)SiO₄ ss
- $\blacktriangleright (BaAl_2Si_2O_8)$
 - Hexa-celsian
 - Mono-celsian

Pacific Northwest National Laboratory U.S. Department of Energy 6

Thermal Expansion of Crystal Products

Name	Composition	TEC	T range (°C)	Reference
Quartz	SiO ₂	11.2	20-100	Donald 1993
		13.2	20-300	
		23.3	20-600	
Enstatite	MgSiO ₃	9	20-400	Donald 1993
		12	300-700	
Clinoenstatite	MgSiO ₃	7.8	100-200	Donald 1993
		13.5	300-700	
Protoenstatite	MgSiO ₃	9.8	300-700	Donald 1993
Forsterite	Mg_2SiO_4	9.4	100-200	Donald 1993
Wollastonite	CaSiO ₃	9.4	100-200	Donald 1993
Calcium orthosilicat	Ca_2SiO_4	10.8-14.4		Donald 1993
Barium silicate	BaSiO ₃	~12.5	20-550	PNNL measured
		~10.5	20-1000	PNNL measured
Hexa-celsian*	$BaAl_2Si_2O_8$	~8	20-1000	Bansal and Hyatt 1989
Mono-celsian	$BaAl_2Sl_2O_8$	~2.3	20-1000	Bansal and Hyatt 1989

*Metastable at <1590°C

Thermal Expansion

Illustration of Stress Formation by Thermal Expansion Mismatch

Thermal Expansion

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 9

Phase Development vs. Time

Glass Properties

Viscosity

- Can only be measured at the high and low end of the viscosity range.
- The values in between are estimated with a Fucher fit.

Pacific Northwest National Laboratory U.S. Department of Energy 11

Glass-Ceramic Sealing Issue

Viscosity affected by Crystallization

- If the rate of crystallization is high, viscosity will increase too quickly and the seal will not bond well.
- If the rate of crystallization is to low, the glass viscosity will be too low making seal very sensitive to load and temperature. Also long hold times will be required to crystallize the seal.

Pacific Northwest National Laboratory U.S. Department of Energy 13

Glass Properties

Contact Angle

- Glass Powder pressed into a pellet d~10mm by h~10mm
- Heated to 850°C at 5°C/min
- Crystallization increases viscosity
- Temperature required to achieve < 90°C angle ~ 1000°C
- Contact angle is > 90° at 850°C. Therefore pressure is required to produce a good bond.

Crystallization Studies by DTA

Effect of Glass
Particle Size

- Coarse: D₅₀ ~ 8 μm
- Fine: D₅₀ ~ 1 μm

Pacific Northwest National Laboratory U.S. Department of Energy 15

Crystallization Studies by DTA

Effect of Heating Rate

- Fine Particle size D₅₀ ~ 1 μm
- 10 °C / min
- 2 °C / min

Pacific Northwest National Laboratory U.S. Department of Energy 16

Microstructure evolution – G18

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 18

Sealing Issues

Chemical Interactions

- Reactions with Interconnect materials
- Reactions with the Electrolyte
- Strength of the G-18
 - Strength as a function Temperature
 - Strength as a function Crystallization Time
- Bond Strength
 - To the interconnect material
- Application Method
 - Tape cast
 - Dispense

Reaction with Interconnect Materials

Chrome Formers

- BaCrO₄ Formation
 - Occurs only were Air is present
 - Weak interface

- Forms in the edge area of the seal
- Ba Depletion near the reaction zone

Pacific Northwest National Laboratory U.S. Department of Energy 20

Reaction with Interconnect Materials

Chrome Interaction

- Solid Chrome interaction
 - Cr2O3(s) + 2BaO(s) + 1.5O2 (g) = 2BaCrO4(s)
 - △G750°C ≅ -347.8 KJ.mol⁻¹
- Chrome Vapor interaction
 - CrO2(OH)2(g) + BaO(s) = BaCrO4(s) + H2O(g)
 - △G750°C ≅ -476 KJ.mol⁻¹

 $Cr_2O_3(s) + 2BaO(s) + 1.5O_2(g) = 2BaCrO_4(s)$

 $\Delta G_{7500C} \cong -347.8 \text{ KJ.mol}^{-1}$, air or cathode side

Pacific Northwest National Laboratory U.S. Department of Energy 21

Reaction with Interconnect Materials

Alumina Formers

- Fecralloy, or alumina coated 400 series stainless (700 hrs)
 - Scale is Alumina
 - Chrome Volatility is minimized
 - BaCrO₄ does not form
 - Al diffusion into the glass seal promotes the formation of BaAl₂Si₂O₈ at the interface
 - If the BaAl₂Si₂O₈ transforms to or forms as mono-celsian the interface will fracture on cooling

Pacific Northwest National Laboratory U.S. Department of Energy 22

Interaction with the Electrolyte

- Glass Yttria Stabilized Zirconia (YSZ) Interface
 - Sample shown has operated at 750°C for 1200 hours
 - Minimal Interaction
 - Very small amounts of potentially BaZrO₃ at the surface of the YSZ

Mechanical Properties

Low temperature Strength (25°C)

- Mean Strength
 - Initial Material (at 750°C 4 hrs) 79 MPa
 - Aged (at 750°C 1000 hrs) 43 MPa
 - Samples had some internal porosity

Pacific Northwest National Laboratory U.S. Department of Energy 24

Mechanical Properties

Bond Strength

"Pop-Gun" Testing

- Relative test of the bond strength of the seal material
 - Metal to Metal
- Ceramic Bi-Layer
- Metal to Bi-Layer
- r Glass Application Method

Pop-Gun Results

Pacific Northwest National Laboratory U.S. Department of Energy 27

Application Methods

Dispensing

- Glass frit is dispersed in a bindersolvent system to form a high viscosity paste.
- The paste is put in a pneumatic syringe and dispensed on the parts of choice with a robotic dispenser

Pros:

- Less Waste
- Fewer handing steps
- Conforms to the sealing surface
- Lower Binder content, faster sealing heating rate

Cons:

- Drying shrinkage may cause gaps in the seal
- Uneven dried surface makes assemble more problematic.
- Some thickness variation
- Dried paste can be broken off during handling

Application Methods

Tape Casting

- Glass frit is dispersed in a bindersolvent system to form a tape-cast slip
- Slip is cast to the desired tape thickness with a doctor blade
- Tape is dried
- Multiple Tapes are laminated to achieve the desired thickness
- Laminated tape is cut out to the desired shape (Gasket)
- Pros:
 - Easy to Assemble
 - Uniform thickness

Cons:

- Large amount of scrap (may be able to reclaim)
- Not very good for very narrow seals (difficult to handle)
- Large amount of binder
 - Slow heating rate is required to remove the binder
 - Large amount of shrinkage

Pacific Northwest National Laboratory U.S. Department of Energy 29

Modifications to the G-18 Glass

Needed improvements

- Higher Crystallized TEC
 - Crystallized TEC that doesn't change with time
 - Crystallized Phase Stability
- Improved Bonding
 - Minimize Chemical interaction with interconnect materials
 - Alumina formers
 - Chrome formers
 - Better Contact Angle
 - Slower Crystallization ?

Modifications to the G-18 Glass

Effect of additive components on glass properties
By <u>Schwickert et al. 2002</u> (BaO-CaO-Al2O3-SiO2 glass system)

increase TEC, T _g , T _M			
improves flux; reduces TEC, surface tension, and stability of the glass			
improves flux, reducing agent			
improves flux			
reduces surface tension			
improves adhesion			
stimulates crystallization			
oxidizing agents			

Above are expected to be valid for a certain range of base compositions within a limited concentration range

Pacific Northwest National Laboratory U.S. Department of Energy 31

Improved Thermal Expansion

Example with La₂O₃ and MnO

- La_2O_3 ties the Al_2O_3 up.
- Prevents the formation of Celsian
- Poor Bonding
- La(OH)₃ ?

Improved Contact Angle

Example with La₂O₃ and CuO additions

- Contact angle measured on cylinders cut from pre-melted glass
 - Rapid heating to each temperature starting from 500°C
 - Average heating rate: >30°C/min
- Modified glass has better contact angle due to slower crystallization?

Summary

Criteria for a SOFC Glass-Ceramic Seal

- TEC match (initially and over time)
- Stability over time and in the environment.
- Good Bond Strength
- Seals at an appropriate temperature
- Minimal Chemical interactions
- Doubtful that any seal will meet all requirements
 - 90% solution and engineer around the remaining issues
 - Example: G-18 Bond strength

Acknowledgements

Bradley Johnson Michael Schweiger Gordon Xia Ashleigh Cooper Brian Koeppel Nathan Canfield Chris Coyle Scott Weil Larry Chick Matthew Motter Kevin Simmons Doug Conner Vince Sprenkle

> Pacific Northwest National Laboratory U.S. Department of Energy 35