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• Grid complexity due integration 
of distributed energy resources 
(DER)

• Short term renewable energy 
variability (PV)

• Balance between supply and 
demand

• Requirements for management 
of complexity

• Sensing & data
• Communication
• Operational control
• Objectives
• Mechanism for coordination

Introduction
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[ http://encorp.com/demand-response/ ]

http://encorp.com/demand-response/


• Load adjusted in response to external signal.

• Signal sent to specific recipients.

• Excess reserve still required to manage missed targets.
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Command-based strategies



• External incentive built into tariff structure.

• Decision making is entirely local.

• Simplest example: metered energy.

• Widespread use of riders – e. g. demand charges.

7

Price-based strategies



• Bi-directional signaling.

• Better efficiency than commanded response.

• Better coordination than incentive response.

• Does not require sharing internal data.
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Transactive strategies
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Established Communication at Scott Park 
Campus by using Eclipse VOLTTRONTM

https://www.marketing91.com/five-types-of-communication/

https://www.marketing91.com/five-types-of-communication/
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Scott Park Campus (SPC)

• 8 buildings: 
• 4.6 MW of controllable loads

• 730 kW average campus load 

• 1 MW photovoltaic generation:
• (Ball park field – 360kW)

• (Office field- 640 kW)

• Battery energy storage system (BESS):
• 130kWh
• 125kw 
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PV Variability Mitigation

Adaptive moving average can achieve following goal:

• Better trade-off between battery utilization and 

degree of smoothness 

• Better battery life 

• Require lower capacity of battery

Adaptive moving 

average agent

BESS

agent
BESS

PV



Intelligent Load Control (ILC)
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• Developed by PNNL

• ILC has been tested with six 
buildings of SPC 

• Three basic elements of ILC: 
• Goal (Target): maintain peak 

consumption, maintain energy 
budget

• Criteria: room types, rated power, 
zone airflow

• Actuation: temperature set point



• Can both curtail and augment 
power

• Able to follow power schedule 
using the flexibility of building

• Uses
• More aggressive load shaping

• Contract power level in a 
transactive market

Bi-Directional ILC
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Different Market Strategies



• Iterative process

• Signals passed hierarchically 
between levels

• Downstream until a node fails to 
balance

• Upstream until balance is restored

• Utility initiates market w/ supply 
curve

• At Scott Park, dynamic utility pricing 
is modeled using LMP

• Each node:
• Keeps models neighbors & assets

• Optimizes its own internal objective

• Actuates assets as needed

Transactive Network 
System (TNS)
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• Building demand & flexibility:
• Predicted with ANN
• Trained with historical data 

from building

• Control:
• Bi-Directional ILC
• AHP handles prioritization of 

zones
• Zones are both augmented 

and curtailed 
• Used to follow a target 

schedule

TNS Building Control (ILC)
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• Building demand & flexibility:
• Demand curves are discovered 

using first order models of zones

• Zones participate in intra-building 
double-auction market

• Control
• Market clearing price corresponds 

to a point on demand curve for 
each zone

• Each zone is always actuated in 
accord with its own demand curve

TNS Building Control (TCC)
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[ Robert Lutes, A Look at a VOLTTRON™ Use Case: Transactive Control and Coordination, 

Pacific Northwest National Laboratory VOLTTRON™ 2017 ] 



• Normal day dynamic pricing
• λ depends on LMP.

• Constrained feeder
• Manage constraint w/ changes to λ.

• Inflexible consumer
• No flexibility in one or more directions.

• Spot market for excess of contract

• Contract at original bid price w/ higher 
prices for consumption greater than 
bid level.

• Unpredicted disturbance
• One or more assets/actors fail to 

behave as modeled in short or long 
time-scale.

Economic Market Interface
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• Peak market
• Demand Charges in Dynamic 

Pricing
• DC added to objective and/or λ 

calculations. Sub scenarios
• for penalty in rolling or following 

DC period.

• Peak-mitigation service
• Consumer sells max-peak contract 

w/ penalty for
• non-compliance.

• Buy allowances
• No DC if allowance is honored, 

incur penalties if not.

Use Case 1- Utility Grid to Building 
Market

25



• Uniform rates: 
• Net metering w/ retail export.

• Stepped rates: 
• Different rates for export, 

possibly w/ or w/o net export.

• Dynamic rates: 
• Consumption and/or generation 

rates vary.

Generation Use Cases
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Intra-Building Pseudo-Markets Ancillary Use Cases
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Additional Use Cases


