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The Role of Climate Covariability 
on Crop Yields in the Conterminous 
United States
Guoyong Leng1, Xuesong Zhang1, Maoyi Huang2, Ghassem R. Asrar1 & L. Ruby Leung2

The covariability of temperature (T), precipitation (P) and radiation (R) is an important aspect in 
understanding the climate influence on crop yields. Here, we analyze county-level corn and soybean 
yields and observed climate for the period 1983–2012 to understand how growing-season (June, July 
and August) mean T, P and R influence crop yields jointly and in isolation across the CONterminous 
United States (CONUS). Results show that nationally averaged corn and soybean yields exhibit large 
interannual variability of 21% and 22%, of which 35% and 32% can be significantly explained by T 
and P, respectively. By including R, an additional of 5% in variability can be explained for both crops. 
Using partial regression analyses, we find that studies that ignore the covariability among T, P, and 
R can substantially overestimate the sensitivity of crop yields to a single climate factor at the county 
scale. Further analyses indicate large spatial variation in the relative contributions of different climate 
variables to the variability of historical corn and soybean yields. The structure of the dominant climate 
factors did not change substantially over 1983–2012, confirming the robustness of the findings, which 
have important implications for crop yield prediction and crop model validations.

The impacts of climate change on mean crop yields have been widely recognized at the regional and global 
scales1–5. Climate affects crop growth and food production via complex pathways. The most direct impacts stem 
from the dependence of crop growth on precipitation and temperature6,7. These two variables have been recog-
nized as the major climate factors governing crop growth regionally and globally3,8–11. In addition to temperature 
and precipitation, radiation can have considerable effects on crop growth12–14. Indeed, a response of crop yields to 
radiation variability can be expected because photosynthesis is primarily driven by solar radiation15. Moreover, 
solar radiation is an important driver of evapotranspiration especially in energy limited regions16,17, an essential 
component of the soil water balance that affects crop growth. There is some indication that the amount of solar 
radiation has increased by nearly 0.05 percent per decade since the late 1970s, which is equivalent to one fourth 
of the yearly human energy use18. However, the separate effects of changes in radiative fluxes on historical crop 
yields have not been explicitly quantified using statistical approaches.

Although the combined effects of climate factors (e.g. growing season temperature and precipitation) on crop 
yields are well documented in empirical studies3,10, our understanding of their isolated effects remains incom-
plete. Moreover, important climate variables, such as temperature, precipitation and solar radiation, interact with 
each other and any single variable may explain a certain fraction of the variability of the others (hereafter referred 
to as climate covariability)19,20, thereby complicating detection of the relationship between any single climate fac-
tor and crop yields. A recent modeling study21 pointed out the importance of considering surface solar radiation 
and its covariation with temperatures in estimating temperature impacts on crop yields, hampering the ability 
to quantify the relative effects of climate change on crop yields21,22. Most of the previous empirical studies adopt 
regression analysis without considering the effects of climate covariability, which would therefore dampen the 
detection of climate effects on crop yield. We hypothesize that, without excluding the effect of the covarability 
effects, the effect of a single climate factor on crop yields could not be accurately revealed.

Empirical models that rely on past observations of climate and crop yields offer the potential to understand 
historical relationships between past climate and crop yields23. While many studies have examined the long-term 
effects of climate change on crop yields, relatively a few studies have focused on the response of crop yields to 
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inter-annual climate variability10. Notably, temporal fluctuation of agricultural productions can cause more dev-
astating impacts on food price, farmers’ income and food security than long-term changes in crop yields24–26. 
Here, we provide a data-driven analysis to advance understanding of the effects of precipitation, temperature, and 
solar radiation on historical corn and soybean yield variabilities across the U.S. at the county scale. Specifically, 
we will address the following three scientific questions: (1) to what extent the three climate factors in combina-
tion can explain crop yields variability at the county scale over CONUS and what is the contribution of solar 
radiation? (2) What are the true effects of individual climate factors on the temporal variability of crop yields? 
Here, we perform paired analyses using different statistical techniques: one including climate covariability similar 
to previous studies, and the other excluding such effects. By comparing these analyses, we examine the role of 
climate covariability in explaining crop yield variability; and (3) Which climate variable is a more dominant cli-
mate factor in explaining the historical crop yield variations for different counties over CONUS? We focused our 
analyses primarily on corn and soybean in the CONUS, which account for ca. 41% and 38% of the world’s total 
production of these two crops, respectively. The county level analyses are expected to complement the aggregated 
national scale analyses, which may obscure the differences in climate influence on crop yields due to the omission 
of spatial heterogeneity.

Results
County level crop yield variability over CONUS.  The standard deviation (STD) of crop yields over the 
analysis time period is used to indicate crop yield interannual variability of corn and soybean at the county scale 
(Fig. 1). High STD values up to 27 Bu/acre in corn yields are found in Iowa, Illinois, Missouri, Arizona, east of 
South Dakota, and North Dakota while the lowest variability is obtained for Nebraska, Western Kansas and much 
of Western US. Although the STD is high in productive regions, the relative variability as indicated by the coeffi-
cient of variance (CV, i.e. STD normalized by the mean) is low in Iowa and Illinois (Supplementary Figure S1). For 
soybean yields, the highest STD up to 8 Bu/acre is distributed in productive regions such as Kansas, Nebraska, 

Figure 1.  Standard Deviation (STD) of (a) corn and (b) soybean yields for 1983–2012. Figure was created by 
NCAR Command Language58.
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Iowa and Missouri while low STD is found in southeastern US regions. Averaged over the CONUS with the 
weighting based on crop-harvested area, corn yield variability (standard deviation) is 24.95 Bu/acre/year (or 21% 
of the average corn yields), while soybean yield variability is 7.2 Bu/acre/year (or 22% of the average soybean 
yields) (Table 1).

Effects of radiation in explaining crop yield variability.  During the past three decades, P exhibited 
the largest interannual variability over the mid-west and southeastern US (Figure S2). The largest variations of 
T occurred in the Midwest, especially the upper Midwest region, while Southeastern US experienced the lowest 
variability of T. Variability of R is high in the Southeastern US but low in the Western US. To what extent have 
climate variations, especially radiation changes, influenced the historical crop yield variabilities? Figure 2 shows 
the fraction of corn and soybean yield variability explained by T plus P. In general, climate variability has larger 
explanatory power over the Southeastern US (>​60%) compared to other regions. In major growing regions such 
as the Missouri, Iowa and Illinois, up to 40% and 30% of the total year-to-year corn and soybean yield variability 
can be explained by T plus P, respectively. Corn or soybean yield variability in nearly half of the counties cannot 
be explained by climate variability at the 90% significance level, particularly in the western regions where the var-
iability of crop yields is low. The physical mechanism behind this unexplained variability is an open question since 
many factors influencing crop growth and development are not explicitly considered in this study. Overall, our 
results indicate that 35% and 32% of the corn and soybean yield variability can be explained by T plus P (Table 2), 
respectively, consistent with previous findings2.

Notably, by factoring in R, the regression model explained more variability of both corn and soybean yields 
across the CONUS (Fig. 2b,d). Much of the enhanced correlation is observed over the highly productive region 
of US such as the Missouri, Iowa and Illinois. Averaged over the country, 40% and 37% of corn and soybean yield 
variability, respectively can be explained by combined effects of P, T, and R, an increase of 5% for both crops 

CV STD (Bu/acre) Mean (Bu/acre)

Corn 0.21 24.95 117.07

Soybean 0.22 7.21 32.77

Table 1.   The mean of coefficient of variation (CV), Standard deviation (STD) and annual crop yield over 
all U.S. corn and soybean growing counties for 1983–2012.

Figure 2.  Percentage of inter-annual crop yield variability for corn and soybeans due to seasonal climate 
variability during 1983–2012, at the 90% statistical confidence level. (a,c) Are the crop yield variability of 
corn and soybean, respectively, as affected by precipitation (P) and temperature (T), while (b,d) are for the same 
crops but affected by P, T and radiation (R). A value of 100 implies that the entire variability in observed crop 
yields was explained by climate variability. Dots denote the areas where the relations between climate and crop 
yield is significant at the 90% confidence level. Figure was created by NCAR Command Language58.
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(Table 2). Overall, our results suggest that R, which was often not considered in previous empirical studies, plays 
a non-trivial role in influencing crop yield variability.

Importance of climate covariability in explaining crop yield variability.  Since the climate factors 
as well as their impacts on crop yields can co-vary on interannual time scale, understanding the true effects of 
individual climate factors can help develop more effective adaptation strategies in response to anticipated climate 
change. Figure 3 shows the sensitivity of corn yield to P, T and R with and without excluding the effects of climate 
covariability. By comparing these two sets of figures, the effects of climate covariability can be examined as shown 
in Fig. 3g–i,. In general, P had positive impacts on corn yields over most of the corn growing regions, except for 
Iowa, western Nebraska, and part of Kansas (Fig. 3a). In contrast, T generally exerted negative impacts on corn 
yields, especially in Midwest regions (Fig. 3b). Note that many additional factors, such as local water and soil con-
ditions as well as management practices, may complicate the task of quantifying climate influences crop growth 
and development. For example, the positive and negative correlations between variabilities in corn yield and T in 
western and eastern Nebraska are likely caused by contrasting water management practices (i.e. irrigation in the 
west vs. dryland in the east)27,28. By repeating our analysis for those counties with separate estimates of rainfed 
and irrigated yields for corn and soybean obtained from the USDA (Supplementary Figures S3 and S4), we found 
that the sensitivity of rainfed yields is larger in magnitude than that of irrigated yields, indicating that irrigation 
can reduce the dependence of crop yields on precipitation. This also illustrates the difficulty of including all poten-
tial factors affecting crop yields using statistical approaches, which have inherent limitations due to the selection 
of the independent variables for building the regression model. Tile drainage is used in Iowa to remove excess 
water29, consistent with the negative correlation between P and crop yield over there. In much of the western US, 
P has a dominant cold season peak so the growing season P should have little direct effect on corn yield, and the 
negative relationship is likely reflecting coincidental relationships between growing season P and corn yield with 
other factors such as cold season P, summer soil moisture, and water availability for irrigation.

From the partial regression, an increase of 1 K in T can lead to about 10% decrease in corn yields in the pro-
ductive regions (e.g. Missouri, Iowa and Illinois). Compared to the other regions, the magnitude of corn yield 
sensitivity to P is larger in the water limited western US. Corn yields are expected to increase by up to 15% with 
a 10 W/m2 increase of R in some of major corn growing regions such as Iowa, North Dakota, South Dakota 
followed by Nebraska and California. Without excluding the effects of climate interactions, it was reported that 
corn and soybean yields in CONUS may decrease by 17% in response to a 1 K increase in growing season tem-
perature9, which is much larger than the results obtained in this study. Indeed, comparing the results with and 
without excluding the compounding effects of climate interactions (Fig. 3d–f), similar response of corn yield to 
each climate factor is found in terms of the change direction. However, the response magnitude is much larger if 
the compounding effects from climate interactions are included (Fig. 3g–i).

As for soybean (Fig. 4), similar pattern of yield response to each climate factor is found. Increases of P is 
found to drive up soybean yields, with a magnitude comparable to corn. Soybean yields in Kansas, Tennessee and 
several states in the southeastern US are most sensitive to changes in T, with a 10% decrease in response to a 1 K 
increase in T. In Wisconsin and Illinois, soybean yields are more sensitive to R than in other regions. Importantly, 
the magnitude is also much larger if the effects of climate covariability are included. Overall, our results suggest 
that previous studies using linear regression without excluding the effects of climate covariability would overesti-
mate the effects of single climate factor on crop yields with varying magnitude over different regions. Moreover, 
the crop growing counties with detected relations between climate and crop yield at the 90% confidence level 
would be much weaker after the effects of climate covariability is excluded. The lesser sensitivity or less significant 
relationship after excluding climate covariability indicates the importance of climate covariability in explain-
ing crop yield variability. This finding is also in general consistent with the study by AghaKouchak et al.30 who 
showed that drought analyses based on seasonal mean precipitation substantially underestimate the risk of the 
2014 California drought due to the omission of the compounding effects with temperature.

Dominant climate factor(s) influencing historical crop yield variability.  Although many studies 
emphasized the importance of different climate factors, understanding of the regional differences in controls 
of crop yields is rather limited. Hence, a key question arises as to which climate factor is relatively more impor-
tant in explaining historical crop yield variability in different counties over US? Our analyses show large spatial 
variation in the relative importance of different climate variables to the variability of corn and soybean yields 
across CONUS, as shown in Fig. 5. For corn yields, T alone was able to explain the variability in the Central Great 
Plains, while in the Northern Great Plains and eastern U.S., P alone accounted for most of the variability (Fig. 5a). 
Overall, T alone is the dominant climate factor for 20% of US corn growing counties that contributed 30% to 

Percentage of Variability Percentage of Counties Percentage of Productions

Corn
P & T 35% 41% 63%

P & T & R 40% 44% 68%

Soybean
P & T 32% 32% 53%

P & T & R 37% 34% 59%

Table 2.   The mean crop yields variability due to growing season precipitation (P), temperature (T) and 
radiation (R), for the entire U.S. corn and soybean growing counties, and at 90% statistical significance 
level. The percentage of these counties and their contributions to the total US corn and soybean production is 
also given.
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Figure 3.  Sensitivity of corn yields to changes in precipitation (P, top panel), temperature (T, middle 
panel), and radiation (R, bottom panel). The sensitivity is defined as the percentage changes (%) of corn yield 
normalized by the long-term mean yield to each 10 mm increase of P, 1 °C increase of T and 10 W/m2 increase of 
R, respectively. (a–c) Excluded the effects of climate covariability, while (d–f) is derived using linear regression 
without excluding the effects of climate covariability. (g–i) Are the difference between (b,a,d,b,f,c), respectively. 
Dots denote the areas where the relations between climate and crop yield is significant at the 90% confidence 
level. Figure was created by NCAR Command Language58.

Figure 4.  Same as Fig. 3 but for soybean yields. Figure was created by NCAR Command Language58.
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the total US corn production (Fig. 5b). P alone also dominated corn yield variability in 20% of US corn growing 
counties, but they are mainly located in the Southeastern US, contributing only 17% of total corn production. The 
substantial spatial variation in the dominant climate factors clearly demonstrate that climate impacts are local/
regional and should be addressed by considering local environmental settings. R alone only dominated corn yield 
variability in 5% of US corn growing counties, with a minor contribution of 2% to US total production. However, 
R together with T and P (i.e. R&P, R&T, and R&P&T) has affected corn yields in 14% of corn growing counties (or 
12% of US total corn production).

For soybean, most of the counties, where P alone is the most important factor, are located in North Dakota, 
Nebraska, and Kansas, while T alone is most important in Arkansas, North Carolina and Nebraska (Fig. 5c). P 
alone was most important in 24% of soybean growing counties (20% of total US soybean production), while T 
alone was most important in 14% of the counties that contribute to a 17% of the US total soybean production 
(Fig. 5d). R alone was the most important factor for 6% of soybean growing counties, which produced 7% of the 
total US soybean production. A combination of R together with T and P, affected soybean yields in 11% of soy-
bean growing counties (or 10% of US total soybean production). Overall, the counties where corn and soybean 
yield variability could be significantly explained at a 90% confidence level are located in the major corn and soy-
bean production regions that account for 68% and 59% of the US total corn and soybean production, respectively.

How robust are the derived climate-crop yield relationships? By repeating the analyses using a 20-year win-
dow, we examined the evolutions of the dominant climate factors influencing corn and soybean yield variability 
(Fig. 6). For corn, T prevailed for being most important factor for both the number of counties and the share of 
total US production most of the time. For soybean, T was also the most influential factor in terms of the share of 
production while P dominated in more counties except for a period around 1995. Overall, the relative importance 

Figure 5.  Dominant climate factor significantly explaining inter-annual (a) corn and (b) soybean yield 
variability during 1983–2012 at county level over US. Dominant climate factors indicate those with significant 
relations with crop yields at the 90% confidence level. For example, T means only T has significant relations 
with crop yields while T&P means both T and P have significant relations with crop yields at the 90% statistical 
confidence level. The Grey color indicates the counties where the crop yield variability cannot be explained 
by any of the single climate factor at the 90% significant level. Note the relations are obtained after excluding 
the effects of climate covariability. The insert bar diagrams are statistics summarizing the percentage of 
crop growing counties with crop yield variability dominated by each climate factor(s) and their percentage 
contributions to the US total productions. Figure was created by NCAR Command Language58.
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of the three climate factors and their combinations in influencing crop yields did not change substantially over 
1983–2012, indicating the robustness of the revealed relationships.

Discussions
There are two general approaches to explore the relationships between climate change and crop yields: numerical 
crop modelling31 and statistical modelling23. Due to limited availability of detailed and complete spatially resolved 
datasets on crop types, rotations, climate, land surface and managements as well as incomplete representation of 
the underlying biogeochemical processes, large spreads often exist among different crop models4,32. In this study, 
we adopt a statistical approach to explore the observed relations between climate and crop yields. However, statis-
tical approach also has inherent limitations due to the selection of the independent variables for regression model 
and covariability between various factors.

In addition to temperature and precipitation, we considered the effects of radiation that was often omitted in 
previous studies. We also recognize other important climate factors such as vapor pressure deficits33, atmospheric 
CO2 concentration34, and diurnal temperature range35. Additionally, climate variability ranges from different 
scales such as intra-seasonal, inter-seasonal and inter-annual. Besides the seasonal totals, intra-seasonal climate 
variability can have considerable effects on crop productivity36. Furthermore, extreme events such as droughts, 
floods, heat waves may affect crop growth and productivity significantly37,38 and disproportionately39,40. Use of 
growing season mean climate as an explanatory variable, which is common in statistical approaches2,3,9,23,33,41, 
was adopted in this study, although such an approach has been criticized in that other aspects of sub-seasonal 
variations, such as long dry spells or heat waves, can be critical to crop growth. In addition to climate variability, 
crop yields can also be influenced by management practices such as conservation tillage42, multiple cropping43, 
Soil Mulching44, irrigation45 and fertilization46. Previous studies illustrated the complexity of the processes and 
factors influencing crop yields and highlighted the challenge of attributing crop yields changes to a subset of 
factors23. While this study addresses the covariability between climate variables and their impacts on crop yields, 
covariability between climate and non-climate factors could have some impacts on the results.

Without explicitly considering all of the aforementioned factors and processes, the growing season T, P, and 
R could only significantly explain the interannual variability in corn and soybean yields in half of the counties at 
a confidence level of 90%. Ray et al.33 showed that one third of crop yield variability can be explained by growing 
season mean temperature and precipitation. Lobell and Field2 found that around 30% of corn and soybean can 
be explained by growing season mean temperature and precipitation. Our estimates that mean growing-season 
climatic conditions explain ~40% and ~37% of viabilities of corn and soybean yield, respectively, is consistent 
with their estimates and many other relevant studies2,3,10. The unexplained fraction of the variability could be 
attributed by many other factors that are not considered as discussed above, due partially to the intrinsic limita-
tion of statistical approaches and available data for such analyses. Aggregation of gridded climate data into the 
county scale add further uncertainties, as the size of most counties in the Southeast US is small compared to a 
0.125 degree grid cell.

Figure 6.  Changes in the percentage of (a,b) corn and (c,d) soybean growing counties and productions 
dominated by each climate factor and their combinations after applying a moving window of 20 years along 
1983–2012 period. Grey bar is the total percentage explained while the solid lines represent that by each single 
or combination of climate factors. The x axis is the central year of the 20-year moving window, e.g. 1993 stand 
for a moving window from 1983 to 2002. Figure was created using software MATLAB 2015a (http://www.
mathworks.com/).

http://www.mathworks.com/
http://www.mathworks.com/
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Compared to climate events induced by a single climate factor (e.g. precipitation deficits), the events with 
concurrent and compound extremes such as low precipitation coupled with high temperatures could be more 
severe and pronounced as demonstrated in the 2003 European drought47, 2010 Russian drought48 and the 2014 
California drought30,49. A number of studies suggest that the chance of concurrent droughts and heat waves has 
increased in a warming climate and are projected to continue increasing in the near future50–52. Despite these 
findings, little attention has been paid to the effects of climate covariance (including concurrent extreme droughts 
and heat waves) on crop yields. Without excluding the effects of climate covariability, the detection of true effects 
of a single climate factor would be dampened. Here, we performed paired analyses using statistical approaches: 
one that does not exclude climate covariability similar to previous studies, and the other excludes climate covar-
iability. By comparing the results, we investigated the effects of climate covaraibility. Furthermore, the dominant 
climate factors (P, T, R, or the combination of the three) are presented at the county level across the U.S. and such 
a pattern is found to be robust during the past 30 years. The robust pattern of dominant climate factors governing 
crop yield is unique in that it is obtained after excluding the effects of climate covariance, therefore is valuable for 
identifying effective crop management practices with the aim of alleviating negative climate change impacts on 
food production. The derived sensitivity of crop yields to each separate climate factor is valuable for evaluating the 
robustness of crop models in simulating responses of crop growth to a changing climate. This type of information 
is sought increasingly for adaptive measures at the national, regional and global level to ensure greater resilience 
in food security in a warming climate with greater likelihood of extreme climate/weather conditions that affect 
directly these climate variables.

Conclusions
Understanding the historical relationship between climate variability and crop yield variability helps in gain-
ing greater knowledge for enhancing resilience of our agricultural production systems to climate variability and 
change. In this study, we examined the isolated effects of temperature, precipitation and solar radiation on the 
county-level corn and soybean yield variability over US for the period of 1983–2012.

Our results show that temperature and precipitation combined can explain up to 32% and 35% of the 
year-to-year US corn and soybean yield variability, respectively. By including the solar radiation, approximately 
5% more variability can be explained for these two crops. Overall, T alone is the major factor for 20% of corn 
growing counties, which contribute to 30% of the total US corn production. Compared to T, the number of 
counties affected significantly by P alone is the same, but they contribute less to the total US productions (17%), 
as most of them are distributed primarily over Southeastern US. For soybean, P alone affects the variability of 
yield over 24% of US soybean growing counties that contribute 20% total US production. These counties are 
located mainly in North Dakota, Nebraska and Kansas. T alone affects 14% of soybean growing regions or 17% 
of total US soybean production in counties located in Arkansas, North Carolina and part of Nebraska. Notably, 
although R alone is important for only 5% and 6% of the corn and soybean growing counties, respectively, but 
this effect increase to 9% and 11% under the combined effects of R, T and P, and they contribute to 10% and 17% 
of total US corn and soybean productions, respectively. This suggests that a relatively smaller region and number 
of counties in U.S. are solar energy limited an affected by R, as compared with the impact of T and P. A more 
detailed examination of time evolution of these relations revealed that they are relatively stable for the entire 
period of this study, indicating the robustness of the revealed patterns of the dominant climate factor(s) affecting 
crop yields. Moreover, we found that the magnitude of climate impacts on crop yields was much larger when the 
compounding effects among multiple climate factors was included, suggesting that previous studies that used 
linear regression between single climate factors and crop yields without excluding their covariance would most 
likely overestimate the effects of climate on crop yields.

Many studies, employing different methods, have linked climate to yields, and each has their own set of 
strengths and weaknesses. Complementing earlier studies that examined the empirical relations between climate 
and crop yield, this study provide new insights by including the effects of radiation, demonstrating the impor-
tance of climate covariability and identifying where and which climate variability has been relatively important in 
explaining historical crop yield variability for each county over US. If climate variability is projected to increase in 
the same regions where climate variability historically affected most of the crop yield variability, some strategies 
for stabilizing crop production in light of such variability should be developed to ensure stable future crop pro-
duction and preventing future food price spikes. Hence, the county level maps developed in this study can serve as 
a guide (e.g. crop yields variability due to climate conditions) for agricultural policy-decisions and management 
practices to build greater adaptive resilience in coping with climate variability and change and their impacts on 
these crops. Further, the statistical models developed in this study may be used to project future yield variability  
together with future climate projections, and for cross-comparison the results from numerical crop models.

Materials and Methods
Crop yield census and observed climate data.  The county-level yearly crop yields for corn and soy-
bean from 1983–2012, along with harvest area, were obtained from the US Department of Agriculture (USDA) 
National Agriculture Statistics Survey’s Quick Stats database (http://www.nass.usda.gov/Quick_Stats). We cal-
culated county-scale crop production by multiplying crop yield with harvest area. Climate data were obtained 
from the phase 2 of the multi-institutional North American Land Data Assimilation System (NLDAS) project53, 
which includes precipitation, air temperature and solar radiation at 0.125 grid resolutions across the contermi-
nous U.S. The NLDAS precipitation data used observations from Climate Prediction Center (CPC) gauge data 
with topographical adjustment, hourly Doppler Stage II radar precipitation data, and North American Regional 
Reanalysis (NARR) precipitation data. The temperature and radiation are derived from the analysis fields of the 
NARR. The temperature was adjusted to account for the vertical difference between the NARR and NLDAS 
fields of terrain height. The radiation is bias-corrected against Surface Radiation Budget (SRB) dataset. The 

http://www.nass.usda.gov/Quick_Stats
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NLDAS meteorological forcing data has been widely validated and used in land surface modeling studies over the 
CONUS. The use of NLDAS gridded temperature, precipitation and radiation time series helps ensure the con-
sistency of the sources of the three climate variable, as the density of weather stations recording all three climate 
variables are relatively non-uniform over the CONUS.

Methodology.  The annual growing season (June, July and August)9 mean surface air temperature (T), pre-
cipitation (P) and solar radiation (R) was calculated at each 1/8th degree grid cell and then aggregated to the 
county level for 1983–2012 period. The linear trend of time series of crop yields from the least squares method 
were first removed to screen out non-weather effects such as technological improvements2. Next, a multiple linear 
regression of de-trended crop yields onto de-trended growing season mean T, P, and R time series is developed. It 
should be noted that the assumption of the linear relations may not hold under all conditions due to the nonlinear 
response of crop growth to climate11,54. By comparing the portion of crop yield variabilitys explained by the two 
regression models, the added value of radiation can be quantified for answering our first scientific question.

Without excluding the effects of climate covariability, the true effects of changes in a single climate factor 
would be dampened. Here, we performed paired analyses using statistical approaches: one including climate 
covariability (with simple regression technique) similar to previous studies, and the other excluding climate 
covariability. In order to exclude the effects of climate covariability (the second scientific question), the par-
tial least squares regression approach55 were adopted. This method has been widely used in detecting the 
hydro-climate variations56,57 and can isolate the effects of a single climate factor by removing statistically the 
effects of other controlling factors. For example, if the purpose is to understand the response of crops yields 
to T (target climate variable), the influence of P and R (controlling climate factors) should be removed first. 
Specifically, crop yield variability that can be explained by the controlling variable (i.e. P and R) are first removed 
by calculating residuals (r1) of regressing crop yields against the P and R. Next, the residuals (r2) of regressing the 
target variable (T) against the controlling variables (i.e. P and R) are computed. Finally, the linear regression of r1 
and r2 calculated. The sensitivity of crop yield to the target variable is computed as the slope of the partial regres-
sion. By examining the difference between the sensitivities with and without the climate covaribility effects, the 
role of climate covariability in explaining crop yield variability can be explored. The statistical significance of the 
regressions was calculated according to the two-tailed Student’s t-test. The significance of constructed relations 
between climate factors and crop yield was examined for each corn and soybean growing county at a confidence 
level of 90%. We provided this information in a spatial map marking the dominant climate factors governing the 
historical crop yield variability across the US. Here, dominant climate factors indicate those with significant rela-
tions with crop yields at the 90% confidence level. For example, T means only T has significant relations with crop 
yields while T&P means both T and P have significant relations with crop yields at the 90% statistical confidence 
level. Furthermore, we repeated these procedures using a moving time window of 20 years to examine the evo-
lution of the revealed relationships. We acknowledge the importance of other climate factors not examined here 
to avoid significant complexity in our analyses. However, the same analysis framework can be used by including 
other variables of interest and importance for other specific regions.

References
1.	 Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
2.	 Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 

014002 (2007).
3.	 Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
4.	 Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model 

intercomparison. Proc. Natl. Acad. Sci. USA 111, 3268–3273 (2014).
5.	 Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).
6.	 Rosenzweig, C. & Parry, M. L. Potential impact of climate change on world food supply. Nature 367, 133–138 (1994).
7.	 Schmidhuber, J. & Tubiello, F. N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 104, 19703–19708 (2007).
8.	 Deryng, D., Sacks, W., Barford, C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on 

global crop yield. Global Biogeochem. Cy. 25, GB2006 (2011).
9.	 Lobell, D. B. & Asner, G. P. Climate and management contributions to recent trends in US agricultural yields. Science 299, 1032–1032 

(2003).
10.	 Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. 

Commun. 6, 5989 (2015).
11.	 Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. 

Natl. Acad. Sci. USA 106, 15594–15598 (2009).
12.	 De Wit, A. d., Boogaard, H. & Van Diepen, C. Spatial resolution of precipitation and radiation: the effect on regional crop yield 

forecasts. Agr. Forest Meteorol. 135, 156–168 (2005).
13.	 Muchow, R., Sinclair, T. & Bennett, J. M. Temperature and solar radiation effects on potential maize yield across locations. Agron. J. 

82, 338–343 (1990).
14.	 Trnka, M. et al. Effect of estimated daily global solar radiation data on the results of crop growth models. Sensors 7, 2330–2362 

(2007).
15.	 Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).
16.	 Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–323 (2009).
17.	 Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic 

variability. Rev. Geophys. 50, RG2005 (2012).
18.	 Willson, R. C. & Mordvinov, A. V. Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30, 1199 (2003).
19.	 Diffenbaugh, N. S. & Ashfaq, M. Intensification of hot extremes in the United States. Geophys. Res. Lett. 37, L15701 (2010).
20.	 Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, L14703 (2005).
21.	 Lobell, D. B. & Ortiz-Monasterio, J. I. Impacts of day versus night temperatures on spring wheat yields. Agron. J. 99, 469–477 (2007).
22.	 Chen, C., Baethgen, W. E. & Robertson, A. Contributions of individual variation in temperature, solar radiation and precipitation to 

crop yield in the North China Plain, 1961–2003. Clim. Change 116, 767–788 (2013).



www.nature.com/scientificreports/

1 0Scientific Reports | 6:33160 | DOI: 10.1038/srep33160

23.	 Lobell, D. B. & Burke, M. B. On the use of statistical models to predict crop yield responses to climate change. Agr. Forest Meteorol. 
150, 1443–1452 (2010).

24.	 Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).
25.	 Hertel, T. W., Burke, M. B. & Lobell, D. B. The poverty implications of climate-induced crop yield changes by 2030. Global Environ. 

Chang. 20, 577–585 (2010).
26.	 Iizumi, T. et al. Prediction of seasonal climate-induced variations in global food production. Nat. Clim. change 3, 904–908 (2013).
27.	 Leng, G., Huang, M., Tang, Q., Gao, H. & Leung, L. R. Modeling the effects of groundwater-fed irrigation on terrestrial hydrology 

over the conterminous United States. J. Hydrometeorol. 15, 957–972 (2014).
28.	 Leng, G. et al. Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to 

input data and model parameters. J. Geophys. Res. 118, 9789–9803 (2013).
29.	 Schilling, K. E. & Libra, R. D. Increased baseflow in Iowa over the second half of the 20th century. J. Am. Water Resour. Assoc. 39, 

851–860 (2003).
30.	 AghaKouchak, A., Cheng, L., Mazdiyasni, O. & Farahmand, A. Global warming and changes in risk of concurrent climate extremes: 

Insights from the 2014 California drought. Geophys. Res. Lett. 41, 8847–8852 (2014).
31.	 Edmonds, J. A. & Rosenberg, N. J. Climate change impacts for the Conterminous USA: an integrated assessment summary. Clim. 

Change 69, 151–162 (2005).
32.	 Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim.Change 3, 827–832 (2013).
33.	 Ray, J. D., Gesch, R. W., Sinclair, T. R. & Allen, L. H. The effect of vapor pressure deficit on maize transpiration response to a drying 

soil. Plant Soil 239, 113–121 (2002).
34.	 Sakurai, G., Iizumi, T., Nishimori, M. & Yokozawa, M. How much has the increase in atmospheric CO2 directly affected past 

soybean production? Sci. Rep. 4, 4978 (2014).
35.	 Lobell, D. B. Changes in diurnal temperature range and national cereal yields. Agr. Forest Meteorol. 145, 229–238 (2007).
36.	 Guan, K., Sultan, B., Biasutti, M., Baron, C. & Lobell, D. B. What aspects of future rainfall changes matter for crop yields in West 

Africa? Geophys. Res. Lett. 42, 8001–8010 (2015).
37.	 Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).
38.	 Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E. & Bloomfield, J. Increased crop damage in the US from excess precipitation 

under climate change. Global Environ. Chang 12, 197–202 (2002).
39.	 Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).
40.	 Semenov, M. A. & Shewry, P. R. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. 

Rep. 1, 66 (2011).
41.	 You, L., Rosegrant, M. W., Wood, S. & Sun, D. Impact of growing season temperature on wheat productivity in China. Agr. Forest 

Meteorol. 149, 1009–1014 (2009).
42.	 Karlen, D. L., Kovar, J. L., Cambardella, C. A. & Colvin, T. S. Thirty-year tillage effects on crop yield and soil fertility indicators. Soil 

Till. Res. 130, 24–41 (2013).
43.	 Seifert, C. A. & Lobell, D. B. Response of double cropping suitability to climate change in the United States. Environ.Res. Lett. 10, 

024002 (2015).
44.	 Qin, W., Hu, C. & Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and 

wheat: a meta-analysis. Sci. Rep. 5, 16210 (2015).
45.	 Postel, S. Pillar of sand: can the irrigation miracle last? (Norton, New York, 1999).
46.	 Stewart, W., Dibb, D., Johnston, A. & Smyth, T. The contribution of commercial fertilizer nutrients to food production. Agron. J. 97, 

1–6 (2005).
47.	 Fink, A. H. et al. The 2003 European summer heatwaves and drought–synoptic diagnosis and impacts. Weather 59, 209–216 (2004).
48.	 Trenberth, K. E. & Fasullo, J. T. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010.  

J. Geophys. Res. 117, D17103 (2012).
49.	 Shukla, S., Safeeq, M., AghaKouchak, A., Guan, K. & Funk, C. Temperature impacts on the water year 2014 drought in California. 

Geophys. Res. Lett. 42, 4384–4393 (2015).
50.	 Hao, Z., AghaKouchak, A. & Phillips, T. J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. 

Lett. 8, 034014 (2013).
51.	 Leonard, M. et al. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Change 5, 

113–128 (2014).
52.	 Mazdiyasni, O. & AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. 

Acad. Sci. USA 112, 11484–11489 (2015).
53.	 Xia, Y. et al. Continental‐scale water and energy flux analysis and validation for the North American Land Data Assimilation System 

project phase 2 (NLDAS‐2): 1. Intercomparison and application of model products. J. Geophys. Res. 117, D03109 (2012).
54.	 Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield 

trials. Nat. Clim. Change 1, 42–45 (2011).
55.	 Geladi, P. & Kowalski, B. R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1–17 (1986).
56.	 Smoliak, B. V., Wallace, J. M., Stoelinga, M. T. & Mitchell, T. P. Application of partial least squares regression to the diagnosis of year 

- to - year variations in Pacific Northwest snowpack and Atlantic hurricanes. Geophys. Res. Lett. 37, L03801 (2010).
57.	 Tobias, R. D. An introduction to partial least squares regression. http://www.ats.ucla.edu/stat/sas/library/pls.pdf (16/12/2003).
58.	 The NCAR Command Language (Version 6.1.2) [Software]. Boulder, Colorado: UCAR/NCAR/CISL/VETS. http://dx.doi.

org/10.5065/D6WD3XH5 (2013).

Acknowledgements
This study was carried out with support from the Integrated Assessment Research program through the Regional 
Integrated Assessment Modeling project sponsored by the Biological and Environmental Research Division of 
Office of Science, U.S. Department of Energy. The work is also partially funded by the DOE Great Lakes Bioenergy 
Research Center and NASA (NNH12AU03I and NNH13ZDA001N), and a Laboratory Directed Research and 
Development Project by the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle 
Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RLO1830.

Author Contributions
G.L., X.Z. and M.H. designed the study. G.L. conducted the analysis. G.L., X.Z., M.H., G.R.A. and L.R.L. 
interpreted the results and wrote the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.

http://www.ats.ucla.edu/stat/sas/library/pls.pdf
http://dx.doi.org/10.5065/D6WD3XH5
http://dx.doi.org/10.5065/D6WD3XH5
http://www.nature.com/srep


www.nature.com/scientificreports/

1 1Scientific Reports | 6:33160 | DOI: 10.1038/srep33160

How to cite this article: Leng, G. et al. The Role of Climate Covariability on Crop Yields in the Conterminous 
United States. Sci. Rep. 6, 33160; doi: 10.1038/srep33160 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	The Role of Climate Covariability on Crop Yields in the Conterminous United States

	Results

	County level crop yield variability over CONUS. 
	Effects of radiation in explaining crop yield variability. 
	Importance of climate covariability in explaining crop yield variability. 
	Dominant climate factor(s) influencing historical crop yield variability. 

	Discussions

	Conclusions

	Materials and Methods

	Crop yield census and observed climate data. 
	Methodology. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Standard Deviation (STD) of (a) corn and (b) soybean yields for 1983–2012.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Percentage of inter-annual crop yield variability for corn and soybeans due to seasonal climate variability during 1983–2012, at the 90% statistical confidence level.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Sensitivity of corn yields to changes in precipitation (P, top panel), temperature (T, middle panel), and radiation (R, bottom panel).
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Same as Fig.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Dominant climate factor significantly explaining inter-annual (a) corn and (b) soybean yield variability during 1983–2012 at county level over US.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Changes in the percentage of (a,b) corn and (c,d) soybean growing counties and productions dominated by each climate factor and their combinations after applying a moving window of 20 years along 1983–2012 period.
	﻿Table 1﻿﻿. ﻿  The mean of coefficient of variation (CV), Standard deviation (STD) and annual crop yield over all U.
	﻿Table 2﻿﻿. ﻿  The mean crop yields variability due to growing season precipitation (P), temperature (T) and radiation (R), for the entire U.



 
    
       
          application/pdf
          
             
                The Role of Climate Covariability on Crop Yields in the Conterminous United States
            
         
          
             
                srep ,  (2016). doi:10.1038/srep33160
            
         
          
             
                Guoyong Leng
                Xuesong Zhang
                Maoyi Huang
                Ghassem R. Asrar
                L. Ruby Leung
            
         
          doi:10.1038/srep33160
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep33160
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep33160
            
         
      
       
          
          
          
             
                doi:10.1038/srep33160
            
         
          
             
                srep ,  (2016). doi:10.1038/srep33160
            
         
          
          
      
       
       
          True
      
   




