

Source Area Remediation in Complex Subsurface Conditions at Joint Base Lewis-McChord

January 25, 2022

Christian Johnson and

Michael Annable

Senior Development Engineer

Professor of Environmental Engineering Sciences

PNNL is operated by Battelle for the U.S. Department of Energy

Seminar Overview

Objective: Present a case study describing strategic monitoring approaches and remedies for source removal/control.

Challenge: Trichloroethene NAPL in source area and large dissolvedphase groundwater plume in complex geology.

Approach: Apply multiple remedy elements to address source and dissolved phase plume. Mass flux can help determine source strength, guide remedy design, and provide performance monitoring.

Impact: Verification of thermal treatment performance. Implemented pump-and-treat source control. Both actions help decrease the overall remedy duration.

Outline of Discussion

- Introduction to Joint Base Lewis McChord
 - Complex site with source area, multiple plumes and multiple treatment components
- Mass flux for remedy performance monitoring
 - What it is and example application
- Pump-and-treat for source control
 - Key element to overall remediation strategy

Joint Base Lewis McChord (Fort Lewis) Logistics Center

- Contaminated groundwater in the Logistics Center area
- Trichloroethene (TCE)
 - Historically used as a degreaser/solvent in equipment maintenance
 - Waste solvent disposed of in drums in Landfill 2
 - Formerly known as East Gate Disposal Yard (EGDY)
- Remedial investigations in 1980s and beyond
- Regulatory
 - Superfund National Priorities List in 1989
 - Record of Decision in 1990
 - Explanation of Significant Difference in 2001
- More site details in *Remedial Action Completion Report* (EPA, 2015)

Site Overview

- Site location
- Reference features
- TCE plumes

@PNNL

Conceptual model
 elements

Truex et al. 2006

Conceptual 3D Depiction of Logistics Center Trichloroethene Plumes

- Landfill 2 and I-5 P&T since mid-1990s
- Source removal in 2001
- Upgrade of Landfill 2 P&T in 2005-2006
- SLA P&T since 2009
- Thermal treatment
 - NAPL Area 1 in 2003-2004
 - NAPL Area 2 in 2005
 - NAPL Area 3 in 2006-2007

I-5 P&T System

JBLM Logistics Center Cross Section and Modeling

Pacific

Northwest

Complex geology Outwashes, tills, lacustrine

Window from upper to lower aquifer

• Represented in a numerical model

Used for remedy assessment and design

Landfill 2 Source Treatment Summary

- NAPL area treatment only way to significantly reduce source lifetime and overall cost
- Without source treatment, Landfill 2 P&T would continue for ~500 years
 - Does not meet installation goal for groundwater cleanup
 - Lifecycle cost of >\$60M (constant dollar)
- Preferred remedy includes thermal treatment
 - Thermal treatment new funds required = \$12M
 - Residual contamination P&T remediation lifetime ~ 40 years
 - Landfill 2 P&T lifecycle cost of ~\$6M (constant dollar)
- Effect on source flux
 - Estimated 95% reduction in flux possible

Flux Measurements in Granular Deposits

- Applying mass flux and mass balance concepts
- Example using Joint Base Lewis McChord thermal treatment area
- Work on flux measurement presented here represents efforts of a large collaborative research group supported through a number of funding agencies

Technology Certification Program

Flux-Based Concepts

 M_D = Mass Discharge [MT⁻¹] J = Mass flux [ML²T⁻¹] $C = Concentration [ML^{-3}]$ q = Groundwater flux [LT⁻¹]

Flux Based Site Characterization

- Is knowledge of pre- and post-mass in the source zone critical?
- Because of the difficulties measuring mass in source zones, may want to consider an alternative approach to characterization
- Look at the source zone characteristic that has a direct link to plume response – mass flux/discharge
 - Downgradient control plane

Control Plane

Passive Flux Meter – Groundwater & Contaminant Fluxes

Displaced resident tracers for groundwater flux

Captured contaminants for contaminant fluxes

Hatfield et al., 2004 JCH

Example Site for Flux Based Assessment – Joint Base Lewis McChord

- TCE source zone area defined (3 major NAPL zones)
- Treated the first (upgradient) zone with resistive heating (TRS)
- Measured mass flux using passive flux meters and integral pump test in November 2003
- Site heating from December 2003 to August 2004
 - Average site temperature reached 97 °C
- Post-remediation flux June 2006
- SERDP project in collaboration with the EPA lab in Ada, OK
 - Lynn Wood and Michael Brooks

13

Dissolved-phase TCE Plume

 In 2003, prior to thermal remediation

Pacific

Northwest

Landfill 2 (EGDY) NAPL Thermal Treatment Areas

- Nonaqueous
 phase TCE
 - Thermal treatment areas 1, 2, & 3

Logistics Center Plume Source Zone

• 3 Areas for Remediation

JBLM Shallow Transect Mass Flux

• 0.75 kg/d TCE • 0.15 kg/d DCE

Recent Field Studies

JBLM Thermal Remediation

Note difference in magnitude on pre and post Y-axis scales.

Brooks et al., 2008 JCH

 Indicate significant decrease in mass discharge from source zones after **DNAPL** mass depletion

Hill AFB Surfactant Remediation

Well

Area 1 TCE Flux

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

- Thermal Treatment
- Cost ≈ \$4M
- Flux cost $\approx 2\%$

FIOW

Landfill 2 NAPL Area 1

N

Comparison of Pre-remedial and Post-remedial TCE Mass Flux

 Significant decrease in flux magnitude

Pacific

Northwest NATIONAL LABORATOR

• Shift in spatial distribution

2018 Post-Remediation

24

22

20

0

TCE Flux

Depth below surface (m)

Depth below surface (m)

Depth below surface (m)

55

20

5

\$

35

30

25

20

15

- 2

- 40

Site Mass Balance Components

- Quantified using all available historic site data
- Source strength functions can be linked to site mass balance

@PNNI

Site Mass Balance

- Estimating a mass balance for entire JBLM Landfill 2 site
 - Far more complicated task
 - Not a consistent flux record for the site as a whole
- However, pump-and-treat data can be used
 - Provides a rudimentary estimate
 - Based upon contaminant mass removed after thermal treatment ended (post-remediation)

	TCE	TCE
Year	Mass Removed	Mass Removed
	(lb)	(kg)
2007	329	149.23
2008	246	111.58
2009	129	58.51
2010	141	63.96
2011	108	48.99
2012	119	53.98
2013	71	32.21
2014	61	27.67
2015	85	38.56
2016	85*	38.56 *
2017	85	38.56
Total	1459	662

* No data available – assumed same as 2015 and 2017

Site Mass Balance

- Historical TCE mass removed by pump-and-treat system
- Used with exponential decay source model
- Combinatorial optimization framework
- Determined optimal decay rate (k) and initial 2007 (post-remedial) source mass (M_{post})
- Minimized sum of the squared differences between observed and modelcalculated mass removed values over a ten-year period (2007 to 2017)

Optimal parameters

k = 0.000556853

 $M_{post} = 161.60 \text{ kg}$

Site Mass Balance

 Comparison of measured and model-calculated TCE mass removed by pump-and-treat

Mass Flux Summary

- Linking mass depletion and mass flux at field scales can aid in site management
- Flux distribution may have utility in remedial design
- Passive Flux Meters provide a means to simultaneously measure spatial distribution of mass and Darcy flux

Redesign of Landfill 2 P&T System for Source Control

Pacific

Northwest NATIONAL LABORATORY

Initial Landfill 2 P&T Design

- Initial conceptual site model (CSM)
 - Plume axis and hydraulic gradient in initial CSM (red arrow)
- Initial P&T system
 - 4-spot P&T extraction wells
 - Infiltration gallery upgradient/west of NAPL Area 1
- Refined CSM
 - Seasonal hydraulic changes and drainage to adjacent stream
 - Lateral hydraulic gradient component (yellow arrow)
- Needed improved capture

Initial P&T design extraction wells (4)

Area of high TCE concentration

Infiltration Gallery

29

Landfill 2 P&T Upgrade

- System re-design
 - Used numerical model for design and predictions
 - 8 extraction wells in "V" or dogleg design
 - Moved infiltration gallery
- Predicted groundwater capture pathlines (blue lines)
- Hydraulic head contours (green lines)

First Five Years of Updated Landfill 2 Source Control P&T

- Updated Landfill 2 source control P&T initiated in 2006
- Interpolated TCE concentration data (µg/L) in Vashon Aquifer

Truex et al. 2017

Landfill 2 P&T Data

 Average concentrations over time at extraction wells

Impact on Downgradient Vashon TCE Plume

Year

500 1

Summary

- Thermal treatment significantly diminished the source
- Pre- and post-treatment mass flux was quantified
 - Provided data to assess treatment performance
 - Approach provides information for treatment design and site management
 - Passive flux meters concurrently measure spatial distribution of mass and Darcy flux
- P&T still needed for source control of residual TCE
- P&T design was updated to better control the source area
 - Updated conceptual site model → needed P&T re-design
 - Complex groundwater flow led to dog-leg design
 - Data indicate performance is favorable
 - Plume is being detached from source area
 - Majority of source capture is at PW-1 through PW-5

ment ss and Darcy flux

Impact and Broader Application

- The conceptual site model will evolve over time as additional data is acquired
 - Complex sites often require significant characterization
 - Here, seasonal changes in hydraulic gradient and flow direction were important
- Mass flux is useful for understanding:
 - Source strength
 - How to design source treatment or source control
 - Remedy performance
- Source control is key to minimizing overall remedy duration at JBLM
- These approaches and tools can apply to many sites
 - PNNL and U.S. Army Corps of Engineers pump-and-treat guidance (Truex et al., 2015)
 - Passive flux meters (Hatfield et al., 2004)

- Brooks, M.C., A.L. Wood, M.D. Annable, K. Hatfield, J. Cho, C. Holbert, P.S.C. Rao, C.G. Enfield, K. Lynch, and R.E. Smith. 2008. "Changes in Contaminant Mass Discharge from DNAPL Source Mass Depletion: Evaluation at Two Field Sites." *J. Contaminant Hydrology*, 102:140-153.
- EPA. 2015. Remedial Action Completion Report, Joint Base Lewis McChord Logistics Center. U.S. Environmental Protection Agency, Region 10, Office of Environmental Cleanup, Seattle, WA. Available at: https://semspub.epa.gov/work/10/1476290.pdf
- Hatfield, K., M. Annable, J. Cho, P.S.C. Rao, H. Klammler. 2004. "A Direct Passive Method for Measuring Water and Contaminant Fluxes in Porous Media." *J. Contaminant Hydrology*, 75:155-181.
- Truex, M.J., C.D. Johnson, and C.R. Cole. 2006. *Numerical Flow and Transport Model for the Fort Lewis Logistics Center*. DSERTS NO. FTLE-33, Fort Lewis Public Works, Fort Lewis, Washington.
- Truex, M.J., C.D. Johnson, D.J. Becker, M.H. Lee, and M.J. Nimmons. 2015. *Performance Assessment for Pump-and-Treat Closure or Transition*. PNNL-24696, Pacific Northwest National Laboratory, Richland, Washington.
- Truex, M.J., C.D. Johnson, T. Macbeth, D. Becker, K. Lynch, D. Giaudrone, A. Frantz, and H. Lee. 2017. "Performance Assessment of Pump-and-Treat Systems." *Groundwater Monitoring & Remediation*, 37(3):28-44.

Thank you

Christian Johnson

cd.johnson@pnnl.gov

Michael Annable

michael.annable@essie.ufl.edu

remplex@pnnl.gov
www.pnnl.gov/projects/remplex

Center for the Remediation of Complex Sites

Technical Leadership

Independent technical resource with proven track record of supporting deployment of advanced technologies and alternative strategies

REMPLEX **OF COMPLEX SITES** @PNNL

Multi-institutional Collaborations Integration and leveraging across federal and private partnerships to facilitate

solution development

Solution Development

Leverage existing capabilities spanning all TRLs to provide solutions in adaptive remediation and long-term stewardship that enable risk-based remediation

