
Systems biology

Sequential computation of elementary modes

and minimal cut sets in genome-scale metabolic

networks using alternate integer linear

programming

Hyun-Seob Song1,*, Noam Goldberg2, Ashutosh Mahajan3 and

Doraiswami Ramkrishna4

1Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA, 2Department of

Management, Bar-Ilan University, Ramat Gan 52900, Israel, 3Industrial Engineering and Operations Research, IIT

Bombay, Powai, Mumbai 400076, India and 4School of Chemical Engineering, Purdue University, West Lafayette, IN

47907, USA

*To whom correspondence should be addressed.

Associate Editor: Cenk Sahinalp

Received on July 5, 2016; revised on March 8, 2017; editorial decision on March 21, 2017; accepted on March 23, 2017

Abstract

Motivation: Elementary (flux) modes (EMs) have served as a valuable tool for investigating struc-

tural and functional properties of metabolic networks. Identification of the full set of EMs in

genome-scale networks remains challenging due to combinatorial explosion of EMs in complex

networks. It is often, however, that only a small subset of relevant EMs needs to be known, for

which optimization-based sequential computation is a useful alternative. Most of the currently

available methods along this line are based on the iterative use of mixed integer linear program-

ming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds

up. To alleviate the computational burden associated with the MILP implementation, we here pre-

sent a novel optimization algorithm termed alternate integer linear programming (AILP).

Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and

linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a

minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a

subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases

where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut

sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction

in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a compu-

tational advantage in the EM analysis of genome-scale networks, but also improves the under-

standing of the linkage between EMs and MCSs.

Availability and Implementation: The software is implemented in Matlab, and is provided as sup-

plementary information.
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1 Introduction

Elementary (flux) modes (EMs) is a useful metabolic pathway con-

cept that has been widely used in a broad range of applications,

including (i) the analysis of network properties such as robustness

(Behre et al., 2008; Wilhelm et al., 2004) and fragility (Klamt, 2006;

Klamt and Gilles, 2004), (ii) the estimation of metabolic states such

as flux distribution (Kurata et al., 2007; Wiback et al., 2004) and

enzyme expression pattern (Stelling et al., 2002) and (iii) guiding

metabolic engineering of microbes (Trinh et al., 2006, 2008). EM

was also used as an essential element of dynamic metabolic model-

ing frameworks (Ramkrishna and Song, 2012; Song, et al., 2013),

such as macroscopic bioreaction models (Provost and Bastin, 2004;

Provost et al., 2006), hybrid cybernetic models (HCMs) (Franz

et al., 2011; Kim et al., 2008; Song et al., 2009), and lumped HCMs

(L-HCMs) (Song and Ramkrishna, 2010, 2011).

To date, EM analysis has been applied mostly to moderate-size

networks with a focus on central carbon metabolism. A standalone

pathway analysis tool useful for this purpose is Metatool (von Kamp

and Schuster, 2006), further development of which is being made as

part of a more general network analysis package, CellNetAnalyzer

(Klamt and von Kamp, 2011). Efmtool (Terzer and Stelling, 2008,

2010; Terzer et al., 2009) is a more efficient tool that leads to com-

putation of up to millions of pathways. Efmtool has also been used

in combination with other complementary algorithms for improved

efficiency. For example, regEfmtool (Jungreuthmayer et al., 2013),

that adapted Efmtool to integrate with Boolean transcriptional regu-

latory networks, showed effectiveness in computing feasible EMs by

early exclusion of infeasible modes. In a similar context, tEMA

enabled effective computation of thermodynamically feasible EMs

by incorporating metabolomic data into Efmtool (Gerstl et al.,

2015). Hunt et al. (2014) developed the network splitting algorithm,

the integration of which with Efmtool led to complete identification

of the full set of EMs from a genome-scale network. Despite these

continued encouraging advances, application of these nullspace-

based algorithms (Klamt et al., 2007; Urbanczik and Wagner,

2005a,b; Wagner, 2004) to genome-scale networks remains chal-

lenging in general, due to a computational burden arising from the

combinatorial explosion of EMs (Klamt and Stelling, 2002).

In a broad range of studies on metabolic network analysis, re-

searchers seek a small subset of pathways that is specifically relevant

for a given problem. As an extreme, flux balance analysis (FBA)

(Orth et al., 2010) estimates flux distribution using a single optimal

pathway identified from linear programming (LP). Flux variability

analysis (FVA) (Mahadevan and Schilling, 2003) accounts for other

equivalent optimal pathways as well (albeit not all). It is also com-

mon that metabolic networks are analyzed in a low dimensional

space composed of a few selected reactions, such as phenotypic

space (Gayen and Venkatesh, 2006), yield space (Song and

Ramkrishna, 2009), conversion cone (Urbanczik and Wagner,

2005a,b), and projected cone (Marashi et al., 2012). Decomposition

of an experimentally measured or computationally estimated flux

(or yield) vector into a subset of EMs is another example (Badsha

et al., 2014; Chan and Ji, 2011; Jungers et al., 2011; Song and

Ramkrishna, 2009; Soons et al., 2010). There has also been an

increasing interest in random sampling of EMs to use as a reprehen-

sive subset of the whole (Bohl et al., 2010; Kaleta et al., 2009;

Machado et al., 2012).

In the above applications where only a small subset of EMs

needs to be known, optimization-based algorithms that enable se-

quential computation of EMs can serve as an alternative to

nullspace-based simultaneous enumeration. Optimization problems

for this purpose have been formulated commonly as a mixed integer

linear programming (MILP), while other formulations were also

considered (Bohl et al., 2010; Kaleta et al., 2009; Pey et al., 2015;

Quek and Nielsen, 2014). Example applications of MILP-based al-

gorithms include identification of the first K-shortest EMs (de

Figueiredo et al., 2009), filtered computation of EMs that satisfy a

prescribed criterion (e.g. EMs producing a specific metabolic prod-

uct with a minimum yield) (Pey and Planes, 2014) and decompos-

ition of a given flux vector into a subset of EMs (Badsha et al.,

2014; Chan and Ji, 2011; Chan et al., 2014).

Flexible formulation of MILP that enables selective identification

of EMs comes at a computational price. In comparison to LP (con-

sidered in FBA), the size of MILP is double due to the introduction

of integer variables as indicators for zero and non-zero fluxes.

Further, obtaining accurate solutions can be difficult due to the dif-

ference in the scales of flux and integer variables. Thus, the effective-

ness of MILP significantly decreases as the number of computed

EMs increases.

In this article, we proposed a de novo optimization concept to al-

leviate these problems. Instead of simultaneously solving flux and

indicator variables together, we split MILP into IP and LP to alter-

nately solve them as separate optimization problems. In each step of

iteration, the IP identifies a minimal set of reactions, whose deletion

disables all of the previously found EMs, thus guaranteeing that the

subsequent LP solution to be a distinct EM. In comparison to the

MILP formulation, tandem implementation of two half-sized opti-

mization problems (i.e. IP and LP) is advantageous in reducing com-

putational burden. As another key advantage, independent

implementation of IP and LP removes the issue caused by different

scales of the flux and integer variables, leading to more accurate so-

lutions in comparison to MILP. This fundamentally new formula-

tion we developed here was termed alternate integer linear

programming (AILP) in contrast to MILP.

In addition to EMs, the AILP algorithm identifies ‘minimal cut

sets (MCSs)’ during iteration. This desirable by-product is useful in

metabolic engineering applications, particularly for identifying

knockout targets in designing or optimizing strains (Burgard et al.,

2003; Choon et al., 2014). MCSs can be stated as minimal sets of re-

actions, the deletion of which prevents a metabolic network from

achieving a prescribed objective (Klamt and Gilles, 2004); in a more

general term, they can be defined as those, whose deletion disables

the operation of arbitrary sets of EMs (Klamt, 2006). This implies

that a set of IP-identified reactions for deletion represents an MCS,

if the subsequent LP solution is infeasible. At every iteration, there-

fore, the AILP algorithm generates either an EM (if LP solution is

feasible) or an MCS (if infeasible). Despite such an additional cap-

ability of computing MCSs, AILP achieved substantial time reduc-

tion in computing EMs in comparison to MILP. For example, we

observed more than an order-of-magnitude time reduction in com-

puting several thousands of EMs. The level of time reduction is

shown more significant as the number of computed EMs increases.

Beyond the computational efficiency, AILP offers other useful ad-

vantages, which we discussed through the case studies of moderate-

size and genome-scale metabolic networks.

2 Materials and methods

We briefly discuss general aspects of EMs to provide background

knowledge. For a metabolic network composed of nr (internal and

exchange) fluxes and m intracellular metabolites, steady-state flux

distributions represent any feasible flux vectors that satisfy mass
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balances of intracellular metabolites. In general, an infinite number

of solutions arise from such an underdetermined system with

nr > m, forming an unbounded polyhedral cone in flux space (thus

called flux cone). EMs are a special subset (among the feasible flux

vectors of the cone) that collects all pathways (or sub-networks)

holding non-decomposability property, i.e. pathways composed of

the minimal number of reactions, the removal of any of which dis-

ables their operation in steady state (Klamt and Stelling, 2003). The

standard way to calculate EMs is the Double-Description method

(Motzkin et al., 1953).

EMs can be computed in a different way based on the relation-

ship with extreme currents (ECs) (Clarke, 1988). As a key aspect,

ECs are convex bases in a flux space expanded by splitting reversible

reactions into irreversible (forward and backward) pairs in the net-

work The set of steady-state flux vectors obtained from the network

reconfigured as such forms the flux cone F defined below:

F � fx 2 Rn : Ax ¼ 0 ; 0 � xg (1)

where A 2 Rm�n is the stoichiometric matrix representing the bal-

ances of n ( � nr) fluxes (denoted by x) around m intracellular me-

tabolites. Geometrically, ECs are edge vectors of the flux cone F.

Identification of ECs can also be formulated as a problem of

identifying vertices of a polyhedron, rather than edges of a flux

cone. A common way for this is to constrain a certain flux (e.g. the

rate of carbon uptake or biomass production). Once ECs are identi-

fied, it is straightforward to convert them into EMs through the pro-

jection back onto the original flux space. In this procedure,

therefore, ECs can be considered intermediate solutions before EMs.

In the following, we provide two alternative optimization formu-

lations (MILP and AILP) to identify vertices of the polyhedron. As a

pre-requisite for both MILP and AILP algorithms, we split reversible

reactions into irreversible pairs, by which all fluxes can be assumed

non-negative without loss of generality. We first use an LP to get the

first optimal EM that maximizes or minimizes a given objective

function; then iteratively implement MILP or AILP to sequentially

compute alternative optimal or suboptimal EMs.

2.1 LP for identifying the first EM
Inspired by the work elsewhere (Song et al., 2014), we formulated

the following flux-minimization LP problem to obtain an EM:

min
Xn

i¼1

wixi (2)

such that

Ax ¼ 0; 0 � x (3)

xref ¼ r (4)

xj ¼ 0; j 2 ID (5)

where wi is the weight to the ith flux, xref is a reference flux that is

fixed with an arbitrary positive constant r, and ID denotes the indi-

ces of reactions, the fluxes of which are forced to be zero. The inter-

section between the flux cone and the hyperplane represented by

Equations (3) and (4), respectively, defines a polyhedron, the verti-

ces of which correspond to EMs.

The property of the EM can be determined through the con-

straints in Equations (4) and (5), as well as the values of weighting

factors in Equation (2). For example, in a metabolic network with

two substitutable carbon sources S1 and S2 (the uptake rates of

which are denoted by x1 and x2, respectively), an EM that converts

S1 to biomass with the highest yield can be computed by setting

w1 ¼Wð� 1Þ, wi ¼ 1 ði ¼ 2;3; . . . ; nÞ, x2 ¼ 0, and xB ¼ r, where

W is an arbitrarily large constant and xB is the rate of biomass pro-

duction. This setting uses a flux minimization problem to solve a

yield maximization problem. Throughout this article with a focus

on a yield maximization problem, we chose biomass as a target

product of interest; used 0.1 for r and an appropriately larger value

(�1000) for W.

2.2 MILP scheme
Once the first EM (with the highest yield of biomass) is identified, it-

erative use of MILP can generate a series of EMs in a descending

order of their yield values. With ðK� 1Þ EMs known, the Kth EM

can be computed by adding the following constraints to the LP for-

mulation in the previous section:

0 � xi � Myi; i ¼ 1; 2; . . . ; n (6)

X

i2INZ;k

yi � jINZ;kj � 1; k ¼ 1; 2; . . . ;K� 1 (7)

where yi is a binary integer identifier variable associated with xi, M

is a sufficiently large constant, INZ;k is the indices of non-zero flux

elements of the kth EM, and jINZ;kj denotes the length of INZ;k (i.e.

the number of non-zero fluxes in xk). Inequality condition (6) en-

forces yi ¼ 1 when the corresponding xi is non-zero, while yi can be

free (i.e. either 0 or 1) when xi is zero. Taken together, conditions

(6) and (7) force at least one of the non-zero fluxes (i.e. non-zero

basic variables) of the past solutions to become zero (i.e. to become

a non-basic variable) in the current Kth EM, thus guaranteeing all

subsequently ensuing solutions to be distinct. In the interest of EMs

that produce biomass or ATP, the stopping criterion can be the low-

est values of their yields. Alternatively, the iteration can stop when

the number of computed EMs reaches a certain number.

2.3 AILP scheme
In contrast with MILP that determines flux and identifier variables

together in a single optimization problem, the AILP formulates an

LP and an IP separately for tandem implementation. The IP identi-

fies a minimal set of reactions, the deletion of which deactivates all

of the previously found EMs, so that the subsequent LP solution is

guaranteed to be distinct from the previously identified EMs. The

form of LP in the AILP algorithm is the same as the one formulated

in Equations (2) to (5) except that ID in Equation (5) is updated in

every step based on the output from IP.

The IP is formulated with no direct reference to a metabolic net-

work, which leads the subsequent LP solution to become infeasible

in some cases. As addressed earlier, feasible LP solutions are EMs; if

no feasible LP solutions are found, LP-derived constraints become

MCSs. In the case that ðK� 1Þ EMs and ðL� 1Þ MCSs are found,

we solve the following IP towards the Kth EM or the Lth MCS de-

pending the type of the subsequent LP solution, i.e.

min
X

i

dið� JIPÞ (8)

such that

X

i2INZ;k

di � 1; k ¼ 1; 2; . . . ;K� 1 (9)
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X

i2IC;l

di � jIC;lj � 1; l ¼ 1;2; . . . ;L� 1 (10)

where di is the binary integer variable denoting whether the ith flux

is to be deleted (i.e. 1) or not (i.e. 0) in the subsequent LP problem,

and INZ;k and IC;l respectively denote the indices of non-zero elem-

ents of the kth EM and the indices of removed reactions that led to

the lth MCS. Constraint (9) implies that at least one of the non-zero

elements in each of the previous EMs is forced to be deactivated. In

constraint (10), one of the reactions contained in each of the previ-

ously identified MCSs is forced to be activated. This constraint is to

avoid unfruitful attempts of deleting supersets of MCSs (i.e. CSs),

which are not our interest. While mentioned as IP for simplicity,

Equations (8) to (10) represents a binary IP (BIP) problem because

integer variables di are allowed to take only 0 or 1.

The problem formulated above is translated into a classical com-

binatorial question known as ‘set-covering’ or ‘hitting-set problem,’

which is a basic model widely used in mathematical and engineering

applications (Ceria et al., 1997) as well as in calculating MCSs. In

the situation where all EMs are known, H€adicke and Klamt (2011)

developed the adaptive Berge algorithm to calculate hitting sets that

remove target EMs without destroying a given number of desirable

EMs, which were termed constrained MCSs (cMCSs). Enumeration

of cMCSs was later formulated as a BIP problem (Jungreuthmayer

and Zanghellini, 2012; Jungreuthmayer et al., 2013). Calculating

hitting sets in our problem is relatively simpler as there is no need to

impose those constraints. Thus, our algorithm can be viewed as a

special case of the BIP for computing cMCS.

As illustrated in Figure 1, the AILP primarily uses LP to identify

EMs in combination with IP. The role of this auxiliary algorithm

(i.e. IP) is to provide constraints to make the next EM to be distinct

during iteration. Combining LP with a secondary algorithm for the

sequential computation of EMs is a basic structure commonly used

in other related approaches. The work by Kaleta et al. (2009) may

be considered one of the first attempts to use LP to calculate EMs

from genome-scale metabolic networks. They additionally used a

genetic algorithm to explore the solution space in search of EMs of

interest. The TreeEFM algorithm by Pey et al. (2015) or the algo-

rithm by Quek and Nielsen (2014) improved the computational effi-

ciency by combining LP with a tree search procedure. In contrast,

our method used IP, which desirably enables the systematic identifi-

cation of MCSs, in addition to EMs. In this regard, the AILP holds a

connection to the approach by Haus et al. (2008). They also incre-

mentally computed MCSs and EMs, but using a completely different

algorithm by Fredman and Khachiyan (1996). Based on the dual re-

lationship between MCSs and EMs, they formulated a problem of

finding minimal true assignments (for MCSs) and (the complement

of) maximal false assignments (for EMs) in Boolean representation

of reactions. The key distinction of our approach from Haus et al.

lies in the use of an optimization algorithm, by which the selective

identification of EMs and MCSs can be directed into certain sets of

interest through the flexible design of objective functions and con-

straints. Setting of the objective function in (8), for example, enables

finding blocked reactions with a minimal size. Therefore, when

blocked reactions turn out to be MCSs, they will be MCSs with the

smallest size, which is a critically useful aspect for metabolic engin-

eering application. Similarly, AILP can selectively identify MCSs

with a certain range of size.

2.4 Metabolic network models used for testing

algorithms
We used small- and large-scale metabolic network models to com-

paratively evaluate AILP and MILP algorithms. Small-size networks

include the central carbon metabolism of Escherichia coli growing

glucose (Carlson and Srienc, 2004) and genetically engineered yeast

strain consuming glucose and xylose (Song et al., 2009). E. coli net-

work represents both aerobic and anaerobic growth on glucose.

The original E. coli network contained 36 metabolites and 45 reac-

tions, to which we added the oxygen exchange reaction (R98:

OXY_ext¼OXY) for the sake of convenience. The network of re-

combinant yeast describes the anaerobic growth on glucose or xy-

lose. We used the recombinant yeast network without modification,

which was composed of 30 metabolites and 37 reactions. After split-

ting reversible reactions into irreversible pairs, the numbers of reac-

tions of the small-size E. coli and yeast networks were expanded to

63 and 51, respectively.

As large-size network examples, we chose genome-scale net-

works of Saccharomyces cerevisiae, iND750 (Duarte et al., 2004)

and E. coli iAF1260 (Feist et al., 2007), which were composed of

1061 metabolites and 1266 reactions and 1668 metabolites and

2382 reactions, respectively. We obtained the Systems Biology

Markup Language (SBML) files of iND750 and iAF1260 from

BiGG (Schellenberger et al., 2010). After splitting of reversible reac-

tions, the sizes of the iND750 and iAF1260 were expanded to con-

tain 1702 and 2956 reactions, respectively.

We ran MILP and AILP algorithms using the CPLEX (ILOG,

Mountain View, CA) solvers. The entire program was written in

MATLAB (Mathworks, Inc., Natick, MA). We conducted all com-

putations on a workstation with Intel Xeon CPU 2.4 GHz processor

and 128 GB RAM. We provided metabolic network models (small-

size networks as Metatool files; genome-scale networks as SBML

files) (Supplementary Dataset S1) and the MATLAB scripts used for

the reproduction of the results (Supplementary Dataset S2).

3 Results

We illustrated the concept of the AILP algorithm using a toy net-

work (Fig. 2). All fluxes were treated as non-negative by splitting

the reversible reaction (i.e. R4) into forward and backward pair

(denoted by R4;f and R4;b) (Fig. 2a). We then formulated a biomass-

yield maximizing LP problem for the reconfigured network

(Fig. 2b). The LP is solved under reaction deletion constraint as

Fig. 1. Iterative procedures of computing EMs and MCSs in AILP. Indices J, K ,

and L denote the numbers of total iteration, calculated EMs and calculated

MCSs, respectively. Symbols dJ , NJ , and xJ represent the IP-derived reaction

deletion set, the resulting subnetwork, and the subsequent LP solution at the

Jth iteration
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denoted by ID, which is updated at every iteration by solving the

associated IP problem formulated in Equations (8) to (10). The itera-

tive implementation of the AILP was described as a process of gener-

ating sets of LP (xJ) and IP solutions (dJ) in series (Fig. 2c).

We denoted the intact network by N1 and subnetworks by N2 to

N10. Subnetworks were created at every step by deactivating a min-

imal number of reactions (i.e. boxed elements in dJ ’s) using the IP. In

this example, the complete identification of EMs and MCSs required

10 iterations in total (note that the last iteration was necessary to con-

firm no further LP nor IP solution to be available). Non-zero elements

in d1, d4, and d6 � d9 (in orange boxes) that led to infeasible LP solu-

tions are MCSs represent MCSs, the deletion of which prevents the

network from producing biomass. Among four feasible LP solutions

(in green boxes) (i.e. EMs), x1 and x3 represent two alternative opti-

mal pathways of the highest biomass yield; x4 and x6 the next sub-

optimal. Identification of EMs in a decreasing order is only a special

case we encountered in this specific example because the order is in

general irregular in AILP. The final forms of EMs and MCSs can be

obtained simply by the projection of xJðJ ¼ 1;3;4; 6Þ and dJðJ ¼ 1;4;

6� 9Þ back onto the original flux space.

3.1 Basic properties of AILP solutions
We applied both AILP and MILP-based algorithms to central carbon

metabolic networks of E. coli and recombinant yeast described in

the previous section. While simultaneous computation of EMs

(using Metatool or Efmtool) would be the most efficient for such

small networks, the goal here is to discuss basic properties of AILP

in comparison to the typical MILP implementation.

First, we checked how correctly AILP and MILP algorithms are

able to generate the intended solutions. This examination using

small-size networks is important for assuring the reliability of the al-

gorithms when applied to genome-scale networks. For this purpose,

we considered the following three cases: (i) yeast growth on glucose

and (ii) yeast growth on xylose, (iii) E. coli growth on glucose;

examined how the parameter sets in AILP and MILP algorithms af-

fect the correctness of solutions. While not explicitly shown in

Equations (6) to (10), the common parameter in both algorithms is

the threshold value of e required for determining fluxes to be zero or

non-zero. This parameter is to account for possible errors in numer-

ical precision, e.g. caused by truncation of stoichiometric coeffi-

cients and flux variables. Another parameter, that appears only in

the MILP but not in AILP, is M contained in (6). The value of M

should be large enough so as not to cut off any part of the solution

space, but setting it above a certain value may make the problem ill-

conditioned. Similar issues associated with the choice of M have also

been discussed elsewhere (David and Bockmayr, 2014). Appropriate

values for e and M would vary depending on a problem setting (e.g.

a chosen value of r and lower and upper bounds of fluxes). With a

focus on the computation of biomass-producing EMs, we evaluated

the solution accuracy of MILP and AILP. Both algorithms accurately

computed EMs for the two yeast networks with parameter settings

considered in Table S1. For the E. coli network (which is relatively

larger in size than yeast networks), however, MILP failed to com-

pletely identify EMs using the same range of parameters considered

in the previous case, while AILP worked correctly. The e value for

MILP that we found worked the best was 10�3, which was larger

than the value for AILP by more than two-orders. The impact of M

(another MILP parameter) was not pronounced in the range of 103

and 105 in these examples.

Next, we compared the difference between MILP and AILP in

the order of EM identification using the case of the small E. coli net-

work as an example. As expected, MILP generated EMs in a mono-

tonically descending order of biomass yield (Fig. 3a top). In

contrast, AILP successfully identified the complete set, but in an ir-

regular order (middle). This should not be considered a disadvan-

tage because a simple post-sorting results in ordered EMs. It is

important to note that AILP is also able to selectively collect EMs

that satisfy a certain criterion, for example, normalized biomass

yield (YB;rel)�0.5 (bottom). For simplicity, we denoted the results

of AILP subject to this constraint by a subscript. That is, AILP0 and

AILP0.5 in Figure 3 denote the results from AILP when YB;rel > 0

and YB;rel � 0:5 were imposed as constraint, respectively. MCSs

identified under the constraint of YB;rel �0.5 denote the sets of reac-

tions, the deletion of which disables all EMs whose biomass yield is

above or equal to 0.5. This also implies that the maximum obtain-

able biomass yield from MCS-deleted subnetworks (or mutant net-

works) is less than 0.5.

We also compared the computational efficiency between MILP

and AILP in calculating biomass-producing EMs from the E. coli

network. As shown in Figure 3b shows the elapsed time of MILP

(tMILP) exponentially increased with the number of calculated EMs.

The computational time of AILP to obtain biomass-producing EMs

(tAILP0
) was 1.5 times shorter than that of MILP, while the time to

selectively compute EMs with YB;rel � 0:5(tAILP0:5
) was the almost

the same between AILP and MILP. The initial inefficiency of AILP

as shown by the abrupt increase of tAILP0
and tAILP0:5

at discrete

Fig. 2. Tutorial example problem considered for illustrating the concept of the

proposed AILP algorithm: (a) the original and augmented network, (b) the for-

mulation of LP for computing EMs, and (c) step-by-step procedures of com-

puting EMs and MCSs. NJ , xJ , and dJ , respectively denote the metabolic

network and the corresponding LP solution at the Jth iteration, and the IP-

determined integer vector whose non-zero elements represent the list of reac-

tions to be deleted in the next iteration
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points is due to additional computation of MCSs, i.e. when IP-

derived reaction deletion constraints do not lead to feasible LP solu-

tions. The linkage between MCS occurrence and EM computation

was provided in Supplementary Text.

In Figure 3c, we showed how AILP alternately generated MCSs

and EMs with iterations. The evolutions of MCSs and EMs followed

non-linear patterns composed of repeated sets of linearly-evolving

and stagnant regimes. The occurrence of these two regimes was

exactly opposite between EMs and MCSs, i.e. EMs linearly evolved

whenever MCSs stopped advancing and vice versa. The evolution

patterns from AILP0 and AILP0.5 were initially similar, while they

eventually bifurcated after about 500 iterations. Interestingly, in

both cases, we observed the computation of MCSs was terminated

earlier than EMs, which made EM profiles linearly uprising toward

the end of iterations. This might be case-dependent as we observed

the opposite (i.e. earlier termination of EMs than MCSs) in the ana-

lysis of the tutorial network (Fig. 2c).

In Supplementary Table S2, we considered various other cases with

different biomass yield constraints to compare the computational effi-

ciency between AILP with MILP. For fair comparison, we split the total

time of AILP (tAILP) into the time consumed for computing EMs

(tAILP;EM) and the time consumed for computing MCSs (tAILP;MCS) to

evaluate the relative performance of MILP and AILP in terms of tMILP=

tAILP;EM and tMILP=tAILP. As expected, the range of tMILP=tAILP;EM was

higher (i.e. from 1.3 to 2.7) than that of tMILP=tAILP(i.e. from 0.4 to 1.5).

Although the overall computational efficiency of AILP was shown

greater than that of MILP despite additional computation of MCSs in

these cases, we expect that this difference may not be significant for

small-size networks in general. It is also obvious that in comparison to

nullspace-based algorithms, the use of optimization algorithms is not

computationally advantageous for the analysis of small scale networks.

For example, Efmtool required less than 2 s to compute the full set of

EMs (that includes non-biomass-producing modes as well) from the

same network considered here, while AILP took way longer times even

for computing only subsets (Supplementary Table S2). In the following

section, we comparatively test the effectiveness of AILP and MILP for

complex and large-size metabolic networks.

3.2 Evaluation of computational efficiency of AILP and

MILP using genome-scale networks
We applied AILP to genome-scale networks of S. cerevisiae iND750

(Duarte et al., 2004) and E. coli iAF1260 (Feist et al., 2007). In comput-

ing EMs, we considered glucose as a sole carbon source and took the

maximization of biomass yield as the objective function, in both cases.

The number of EMs can be scaled to millions in genome-scale

networks, but we confined the analysis to the cases of computing the

first several thousand EMs. We compared computational efficiency

between MILP and AILP when 6000 EMs were enumerated from

iND750 (Fig. 4a) and 3000 EMs from iAF1260 (Fig. 4b). In both

cases, MILP showed sharp exponential growth in computational

time with the increasing number of computed EMs; in contrast, the

increase of computational time in AILP was moderate (top panels).

We also displayed the ratio of computational times between MILP

(tMILP) and and AILP (tAILP) (bottom panels). In the case of iND750

(bottom of the Fig. 4a), the time reduction by AILP showed three

distinct phases: (i) an initial abrupt rise and drop during the compu-

tation of 1000 EMs, (ii) almost constant until 3000 EMs were calcu-

lated and (iii) gradual increase afterwards. Time reduction by AILP

was about 10 to 11 times around the peak and about four times

when 6000 EMs was calculated. The difference between AILP0 and

AILP0:5 was insignificant. We observed a similar pattern for

Fig. 3. Comparison of MILP and AILP in computing EMs from the small-size

E. coli network: (a) pattern of EM identification: MILP (top) and AILP (middle

and bottom), (b) profiles of elapsed time for computing EMs from MILP and

AILP, and (c) evolution of MCSs and EMs with iterations. The subscripts in

AILP0 and AILP0:5 denote the constraints imposed on AILP such as YB;rel � 0

and YB;rel � 0:5
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iAF1260, while tMILP=tAILP showed appreciable difference between

AILP0 and AILP0:5 in this case (bottom of Fig. 4b): AILP reduced

the computational time by a factor of 19 (AILP0) and 23 (AILP0:5)

around the peaks and by a factor of about 10 (AILP0) and 11

(AILP0:5) at the computation of 3000 EMs.

The effectiveness of AILP in computing a given number of EMs

was shown greater when network size was larger. Time reduction by

AILP in computing 3000 EMs for iAF1260 was more than twice of

that for iND750. The relative performance of AILP was also shown

greater as the iteration goes on. In the case of iND750, tMILP=tAILP0:5

increased (almost in a linear fashion) from 2.3 to 4.1 when 3000

and 6000 EMs were calculated, respectively. Similarly, tMILP=tAILP0:5

for iAF1260 was 9.7 with 2500 EMs, but became 10.6 with 3000

EMs. When extrapolated to many more EMs, the effectiveness of

AILP in time reduction in comparison to MILP is estimated to be

orders of magnitude. These results highlight the circumstances

where the utility of AILP can be fully beneficial.

3.3 Properties of initial subsets of EMs as samples
As discussed earlier, AILP generates EMs irregularly (while not ran-

domly). This feature brings a possibility of using an initial set of

EMs as samples of the entire set without having to wait for the com-

pletion of long-lasting computation. We examined the extent to

which initially computed subsets of EMs may represent to the entire

set with respect to distributions of relative fluxes of consumption

and production of extracellular metabolites including biomass.

Figure 5a shows the distribution of normalized biomass yield of

EMs obtained from the small-scale E. coli network. The distribu-

tions were similar between the full 832 biomass-producing EMs

(bottom), and EMs sampled by taking initial two-thirds (middle)

and one-third (top) of the whole. We made the same observation for

all other exchange fluxes in the small-size E. coli network

(Supplementary Fig. S1). In Figure 5(b), we also provided the distri-

butions of EM length (left column) and MCS size (right column).

The distribution of EM length was also similar among three cases.

Notably, we observed no appreciable bias into smaller-size EMs

even in the first subset (i.e. the 277 EMs identified during the initial

iterations). In contrast, the distribution of MCS size developed lon-

ger tails to the right tail as the size of EMs increased, because we for-

mulated IP such that MCSs are identified starting from the smallest

size progressively toward longer size.

Similar trends were observed for the genome-scale yeast network

iND750 (Supplementary Fig. S2). As the whole set of EMs is not

available in this case, we compared EMs when the different number

of EMs were taken, i.e. first 2000 (top), 4000 (middle) and 6000

(bottom). As in the case of small E. coli network, the distribution of

normalized biomass yield (Supplementary Fig. S2a) and EM length

(Supplementary Fig. S2b) were consistent across three EM subsets.

Fig. 4. Comparison of MILP and AILP in computing EMs from genome-scale

networks: (a) S. cerevisiae network iND750 and (b) E. coli network iAF1260.

Top panels compare elapsed times of MILP and AILP; bottom panels show

time reduction by AILP. The subscripts in AILP0 and AILP0:5 denote the con-

straints of YB;rel � 0 and YB;rel � 0:5, respectively, imposed during AILP

implementation

Fig. 5. Analysis of EMs and MCSs computed from the small-size E. coli net-

work: distribution of (a) normalized biomass yields and (b) EM length and

MCS size. The distribution was compared among the three different sizes of

EM subsets (as denoted by the number inside each panel) and among three

MCS subsets computed along with the corresponding EM subsets
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Besides biomass yield, we also checked that distributions of all other

exchange fluxes did not change much (results not shown).

These results imply that initial subsets of EMs may be used to

analyze metabolic networks even without identifying the entire set

of EMs. This is important in the analysis of large-scale metabolic

networks, for which the enumeration of EMs of interest may take a

significantly long time.

4 Discussion

There are several unique features of the AILP in comparison to the

MILP as summarized as follows. First, while the MILP computes

EMs in a descending (or ascending) order of a chosen property (e.g.

biomass yield), the pattern of identifying EMs by the AILP is some-

what irregular, although not purely random. Thus, if the iteration is

terminated early before meeting the stopping criterion, the AILP

provides a subset of EMs, whose property of interest (e.g. biomass

yield) is distributed over a given range. These EMs may be used as a

sample subset for analyzing metabolic networks. Second, the AILP

computes MCSs as a bonus by-product. Unlike the way to generate

EMs, the AILP identifies MCSs in a regular pattern with respect

their sizes. That is, the minimization problem formulated in the IP

initially generates MCSs of the smallest size and progressively in-

creases their size. This feature is useful for metabolic engineering be-

cause MCS of the smallest size will help to minimize the genetic

intervention in designing new strains. Third, the AILP offers signifi-

cant advantages in the speed of computing EMs over the MILP.

While the computational burden will gradually increase both in

MILP and AILP due to the increasing size of the constraints as the it-

eration builds up, the resulting inefficiency is far less for AILP that

determines integer and flux variables separately, than MILP that de-

termines them simultaneously. The increasing size of the constraints

in the AILP affects only the efficiency of the IP, not of the LP. Also

note that even though both MILP and IP are NP-hard problems in

theory (Garey and Johnson, 1979), the latter takes much less time to

solve in practice. LP, on the other hand, can be solved in time poly-

nomial in size of the input. Finally, the AILP formulates a well-

posed optimization problem, while the MILP formulation can be

ill-posed, particularly as the iteration goes on, due to two types of

mixed variables with different scales. Therefore, scaling is an im-

portant issue to resolve in the MILP, but not in the AILP.

In comparison to individual enumeration of EMs and MCSs, the

use of the AILP algorithm is also beneficial because it generates both of

them, implications of which can be intuitively translated. From a se-

quential series of EMs and MCSs, one can instantaneously identify (i)

through what metabolic pathways the network can achieve a pre-

scribed goal (e.g. biomass yield higher than a given threshold) and (ii)

what reaction knockout scenarios will stop the network from achieving

it. This capability can facilitate metabolic engineering efforts towards

the identification of target pathways and fluxes for amplification or

deactivation in developing industrially useful strains. The AILP algo-

rithm is also useful for drug design research as it can identify the small-

est subsets of genes and reactions fatal to pathogen growth. Altogether,

this information is key input for robustness analysis of metabolic net-

works, which can be conveniently provided from a single algorithm

such as the AILP method we proposed here.

Our work was primarily motivated by the need to identify a chosen

subset of EMs to be used as input to dynamic metabolic network mod-

eling such as L-HCM. There is an advantage to using a method that

progressively computes EMs with prospects of terminating the process

when the ones collected are sufficient for the purpose instead of

computing the entire set of EMs. The AILP algorithm can selectively

identify those EMs (needed for dynamic metabolic modeling) from a

constrained space. This capability can also be useful for other metabolic

pathway analysis tools including control-effective fluxes (CEFs) (Stelling

et al., 2002) and Computational Approach for Strain Optimization aim-

ing at high Productivity (CASOP) (Hadicke and Klamt, 2010). These

frameworks in common estimate a flux distribution in a network by

taking a weighted average of EMs. In this case, only a subset of individ-

ual EMs with higher weights (such as those that can produce biomass,

ATP or any metabolites of interest at higher rates or yields) needs to be

identified. The utility of the AILP algorithm also extends to the analysis

of metabolic networks composed of multiple interacting organisms

(Henry et al., 2016; Song et al., 2014). Various desirable properties of

the AILP algorithm discussed in this work will enable facilitating the

EM analysis of microbial community networks [e.g. the work by Taffs

et al. (2009)] to be applicable to more complex systems.
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