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Abstract—The unprecedented amount of data that needs to
be processed in emerging data analytics applications poses
novel challenges to industry and academia. Scalability and high
performance become more than a desirable feature because, due
to the scale and the nature of the problems, they draw the line
between what is achievable and what is unfeasible. In this paper,
we propose SHAD1, the Scalable High-performance Algorithms
and Data-structures library [1].

SHAD adopts a modular design that confines low level details
and promotes reuse. SHAD’s core is built on an Abstract
Runtime Interface which enhances portability and identifies the
minimal set of features of the underlying system required by the
framework. The core library includes common data-structures
such as: Array, Vector, Map and Set. These are designed to
accommodate significant amount of data which can be accessed
in massively parallel environments, and used as building blocks
for SHAD extensions, i.e. higher level software libraries.

We have validated and evaluated our design with a perfor-
mance and scalability study of the core components of the library.
We have validated the design flexibility by proposing a Graph
Library as an example of SHAD extension, which implements two
different graph data-structures; we evaluate their performance
with a set of graph applications. Experimental results show that
the approach is promising in terms of both performance and
scalability. On a distributed system with 320 cores, SHAD Arrays
are able to sustain a throughput of 65 billion operations per
second, while SHAD Maps sustain 1 billion of operations per
second. Algorithms implemented using the Graph Library exhibit
performance and scalability comparable to a custom solution, but
with smaller development effort.

Index Terms—Data structures, Distributed systems, Parallel
programming, Software library, Big data, High performance
computing

I. INTRODUCTION

Emerging data analytics methodologies aims at addressing

the 5 Vs of Big Data [2]: Volume, Velocity, Variety, Variability

and Value. Processing an unprecedented volume of heteroge-

neous data that is rapidly changing poses novel challenges

to industry and the research community. Under these working

conditions, providing High-Performance and scalable solutions

becomes a fundamental requirement. Intuitively, when the data

does not fit in the memory of a conventional server, the

application should be able to scale in size and performance

on multi-node systems. Due to the space and computational

complexity of today’s analytics workloads, scalability and

high-performance not only imply a faster time to solution but

1Source code available on GitHub at https://github.com/pnnl/SHAD

also may push forward the limit between what is achievable

and what is unfeasible in human time.

Conventional approaches tackle the Big Data challenges

highly customizing the applications to target specific machines

or architectures. Alternatively, another common and more

aggressive solution is based on hardware-software co-design

which customizes both the software implementation and the

actual target hardware to solve a specific class of problems [3].

These approaches are characterized by significant design and

development effort, long time-to-solution, and low portability

and flexibility. To address these issues, we propose SHAD, the

Scalable High Performance Algorithms and Data-structures

library. SHAD is designed to achieve flexibility and portability,

while providing scalability and high performance. Unlike

other high performance data analytics frameworks [4], [5],

SHAD can support different application domain, including,

but not limited to, graph processing, machine learning, and

data mining.

The SHAD software stack is composed of three layers: an

Abstract Runtime Interface, a collection of general purpose

algorithms and data-structures, and domain specific libraries

called SHAD extensions. The Abstract Runtime Interface ex-

poses a set of primitives for managing tasks execution and

concurrency, and data-movements on both clusters and single-

node machines, with the purpose of hiding low level details of

the underlying runtime systems and architectures. Using the

Abstract Runtime Interface, we define the core SHAD data-

structures layer, which includes general purpose containers

such as sets, maps, and vectors. Such data-structures expose

interfaces inspired by the C++ Standard Template Library,

improving developers productivity and possibly facilitating

SHAD adoption in already existing code bases. The core

SHAD components offer enough features to implement a

wide variety of applications, and they represent the building

blocks for SHAD extensions, such as linear algebra and graph

libraries. Extensions can be developed as layered libraries, and

they can use multiple lower-level libraries. This unique feature

makes SHAD not only a programming library, but an evolving

framework supporting a variety of big data analytics and high

performance computing applications. SHAD adopts a shared-

memory programming model, even though data can be actually

spread over different nodes of a cluster. To achieve high-

performance, SHAD makes extensive use of asynchronous

(non-blocking) parallel execution, and active messages. In
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particular, the data-structures access methods allow to auto-

matically migrate the computation where the data are located,

rather than gathering them. This is particularly beneficial when

the same operations (e.g., a function) is applied to data. A

typical example is visiting all the nodes/edges of a graph, or

updating all the elements of an array.

In this paper we describe the design of SHAD, detailing

features and adopted solutions for its components. The main

contributions of our work are:

• the definition of an Abstract Runtime Interface, used

by the upper layers of the SHAD software stack, that

identifies the minimal features set of the underlying

systems required by SHAD;

• the design of a general data-structure template, which can

be adopted to implement data-structures on distributed

systems;

• the design and implementation of a set of general purpose

data-structures, using the generic template; such data-

structures can be composed to obtain more complex data-

structures and libraries, called SHAD extensions;

• two variants of an example SHAD extension of a graph

library: the first is based on the Compressed Sparse

Row (CSR) representation while the second is based on

indexing;

• a performance and scalability evaluation of the general

purpose data-structures and of example applications im-

plemented using the graph libraries.

The remainder of the paper proceeds as follows. Section II

overviews the proposed methodology and design; more in

detail: Section II-A describes the rationale behind the Abstract

Runtime Interface, and its main characteristics; Section II-B

illustrates the general layout designed for the SHAD data-

structures; Section II-C describes the core, general purpose

SHAD data-structures. Section III introduces SHAD exten-

sions, and describes graph libraries as practical examples. Sec-

tion IV validates the proposed approach through experimental

performance and scalability studies. Section V overviews re-

lated work, and Section VI concludes the paper, and anticipates

future work.

II. SHAD DESIGN

One of the main objective of SHAD is to provide a simple,

productive, programming model. For this purpose, SHAD

adopts a shared-memory abstraction at the user level, even

though actual data can be distributed on several nodes of

a cluster and operations can be executed remotely and in

parallel. SHAD is designed as a software stack, composed

of three layers: the Abstract Runtime Interface, the SHAD

core library which includes general purpose data-structures,

and, SHAD extensions, which are domain specific libraries

obtained by composing SHAD data-structures and possibly

other extensions.

A. The Abstract Runtime Interface

The Abstract Runtime Interface is designed to achieve porta-

bility of SHAD on different platforms, by decoupling the upper

layers of the stack from the underlying architecture. We have

firstly explored the adoption of a runtime abstraction layer

with similar objectives in [6]. From our previous effort, we

preserve the concept of machine abstraction, which models the

hardware platform as a set of localities. We define a locality

as a unit of computation with directly accessible memory:

depending on the characteristics of the underlying system,

localities can model cores, NUMA domains, or nodes in a

distributed system. Similar concepts are adopted for example

in [7].

In SHAD, we extensively use remote and asynchronous

execution through active messages [8]. Active messages are

used to reduce expensive data movements across localities,

and thus reduce network traffic. For example, several data-

structures access methods, provided in the upper layers of

the stack, exploit active messaging to automatically move the

computation where the data are located, rather than gath-

ering them locally. This is particularly beneficial when the

same operations (e.g., a function) is applied to big portion

of the data-structures. A typical example is visiting all the

nodes/edges of a graph or updating all the elements of an array.

Asynchronous execution is adopted to exploit parallelism, and,

in case of asynchronous remote execution, also to tolerate the

communication latency of the network. In fact, it has been

shown that asynchronous execution is beneficial in several

applications areas, for example it can help to speed up conver-

gence for linear systems [9], speed up belief propagation [10],

and stochastic optimization [11].

The Abstract Runtime Interface supports asynchronous ex-

ecution by associating identifiers, called handles, to spawned

tasks; multiple tasks can be associated to the same handle.

The runtime interface includes wait commands, which allow

checking for the termination of the asynchronous operations

associated with a given handle. The main methods offered

by the Abstract Runtime Interface are:

• [async]ExecuteAt [asynchronously] execute a function

on a given locality;

• [async]ExecuteAtWithRet [asynchronously] execute a

function with a return value on a given locality;

• [async]ExecuteOnAll [asynchronously] execute a func-

tion on all localities;

• [async]ForEachAt [asynchronously] execute a parallel

loop on a given locality;

• [async]ForEachOnAll [asynchronously] execute a paral-

lel loop on all localities;

• waitForCompletion wait for the completion of asyn-

chronous tasks.

Listing 1 shows an example program written using the

Abstract Runtime Interface: when working at this level of

abstraction, users need to explicitly manage data locality. One

of the purposes of the higher-level APIs is to hide such

complexity. In this work, we use the Global Memory and

Threading (GMT) runtime system [12] as backend for the

SHAD Abstract Runtime Interface implementation. Specifi-

cally, we only employ the software multi-threading, the active

443



1 // each locality has its own counter variable

2 std::atomic<size_t> counter(0);

3

4 int main(int argc, char ** argv) {

5 auto incrLambda = [] (shad::rt::Handle &handle,

6 size_t &incr) {

7 // do something

8 counter += incr;

9 };

10 size_t args = 1;

11 shad::rt::Handle handle;

12 // execute the specified function on all localities

13 shad::rt::asyncExecuteOnAll(handle, incrLambda, args);

14 // wait for termination of asynchronous tasks

15 shad::rt::waitForCompletion(handle);

16

17 // synchronous reduce

18 size_t overallCnt;

19 auto getLambda [] (size_t& args, size_t* retValue) {

20 // do something

21 *retValue = counter;

22 };

23 for (auto loc : shad::rt::allLocalities()) {

24 size_t remoteCnt = 0;

25 // synchronous remote execution, with return value

26 shad::rt::executeAtWithRet(loc, getLambda,

27 args, &remoteCnt);

28 overallCnt += remoteCnt;

29 }

30 ...

31 return 0;

32 }

Listing 1. Example program using SHAD Runtime Interface Methods.

messaging, and the message aggregation modules of GMT.

The Abstract Runtime Interface provides an additional layer

of abstraction that simplifies the porting of SHAD to different

runtime systems and computer architectures by only imposing

a small set of requirements. This enabled us to use sub-

components of a much more complex runtime system, as this

implementation demonstrates.

B. Data-structures Layout

All the SHAD data structures are implemented as distributed

global objects, which provide the user with a shared memory

abstraction on distributed memory machines. In this work,

we define a general data-structure template, which can be

adopted as a design pattern for data-structures on distributed

systems. Figure 1 shows the main components of such a

template. Each locality has a portion of the data (local data),

a catalog for the data-structure, and an aggregation buffer. All

the interaction between these components is obtained through

the data-structure interface, which also serves as an API for

external users.

Local Data: The proposed design pattern does not make

any specific assumption on the kind of storage used for the

local data. In our current implementation of SHAD, all the

data-structures are stored in main memory to provide high

performance. Nevertheless, it is also possible to adopt other

solutions. For example, a promising approach that we plan to

explore in future works, is to exploit persistent storage (e.g.,

SSDs) to support mechanism for reliability.

Catalog: The object catalog, which is replicated on each

locality, manages the objects’ life cycle. When a distributed

object is created, the catalog associates a unique identifier to

Figure 1. Generic SHAD data-structures design.

the newly created instance. Once the catalog has assigned an

ID to the new object, it sends an active message to all the other

localities in the system to allocate the local portion of the data

structure. To avoid the complex synchronization across the

system for assigning identifiers to new objects, the space of

the valid object identifiers is partitioned between the available

localities. Consequently, each locality has a limited but very

large number of object that can be concurrently instantiated for

each data-structure type (248 in the current implementation).

The assigned object identifier will act as a global pointer to

the instantiated global object across the system so that, when

the computation moves from one locality to another, it can

be used to access the local portion of data of the distributed

object.

Aggregation Buffers: Given the shared-memory abstrac-

tion, populating a data-structure may require transferring data

to a remote locality. Performing many fine-grained data trans-

fers across the network of a distributed system is typically

not efficient: for this reason, our design template includes

aggregation buffers for data movements. To improve perfor-

mance, we allocate on each locality one aggregation buffer per

remote destination, so they can be managed independently. The

size of the aggregation buffers can be tuned to better suit the

characteristics of different networks and/or runtime systems.

Data Structure Interface: The data structure interface

defines the behavior of the data structure and provides a global,

shared memory view of the associated objects. All SHAD

data-structure interfaces offer a common subset of operations,

which have similar behaviors. These are:

• Create create a new data-structure, allocating local data

(on all localities) and assigning a new identifier;

• Destroy destroy the data-structure, invalidating the asso-

ciated identifier and freeing (on all localities) the local

data memory;

• [async]Insert [asynchronously] insert an element in the

data-structure;

• [async]Delete [asynchronously] remove a specific ele-

444



ment from the data-structure; currently, only hash-based

data-structures support delete operations;

• [async]Lookup [asynchronously] retrieve a specific ele-

ment from the data-structure;

• [async]Apply [asynchronously] apply a function to a spe-

cific element, eventually, with additional user-provided

arguments;

• [async]ForEachElement [asynchronously] apply a func-

tion to all the elements in the data-structure, eventually,

with additional user-provided arguments.

Intuitively, each data-structure may provide additional data-

structure specific methods, algorithms, and variations of the

above mentioned ones. The underlying implementations use

the catalog, the aggregation buffer, and, the services provided

by the abstract runtime interface, to move computation and

data between different localities.

Implementation Details: In the current implementation

of SHAD, an Abstract Data Structure (ADS) class serves as

base class of all the SHAD data-structures and implement

the previously described template. The ADS provides all the

common functionalities, such as, for example, the catalog

management. This software solution aims at facilitating the

development of additional data-structures, and at providing a

more consistent interface between them.

C. SHAD General Purpose Data-structures

The SHAD core library is a collection of commonly used,

general purpose data structures, which currently includes Ar-

ray, Vector, Map and Set. All the core data structures are de-

signed to be thread safe, so they can be accessed concurrently

from and within any locality. They expose high-level APIs

inspired by popular programming languages libraries, and in

particular, by the C++ Standard Template Library (STL). As

in the STL, all data-structures are templated, so they can store

arbitrary data. The adopted APIs have the purpose of:

• hiding all the low-level details of the underlying archi-

tecture;

• increasing the user-productivity without sacrificing scal-

ability and performance;

• facilitating the adoption of SHAD in existing code-

bases, thanks to their similarity to the well known STL

interfaces.

Nevertheless, SHAD APIs also provide (mainly through over-

loading) advanced users with hooks for customizing the data

layouts or access methods behavior: for example, it is pos-

sible to customize the data distribution, and the behavior of

insert/update operations, for which the default is overwriting

existing data, if any. In the following we detail the key

features of the SHAD core data-structures:

a) Array: Conforming with the C++ STL array, the

SHAD Array has fixed size, which is defined when the object

is created. In our current implementation data are spread

evenly across the system by default in order to maximize data

locality when accessing contiguous elements. Nevertheless,

the experienced user could specify alternative data distribution

policies.

1shad::Map<size_t, size_t>::ObjectID CreateAndPopulate(

size_t expSize) {

2// create a new Map object

3auto mapPtr = shad::Map<size_t, size_t>::Create(expSize);

4shad::rt::Handle handle;

5for (size_t i = 0; i < expSize; ++i) {

6mapPtr->AsyncInsert(handle, i*2, i+1);

7}

8shad::rt::waitForCompletion(handle);

9// return the Global Identifier of the Map

10return mapPtr->GetGlobalID();

11}

Listing 2. Usage example of SHAD Map Data-structure.

b) Vector: SHAD vectors are basically dynamically ex-

pandable arrays. Efficient dynamic expansion is achieved by

striping the data across the system in fixed size chunks. This

data layout and the dynamic expansion of the container allows

supporting push-back operations and insert of data-sequences

larger than the current size of the container. For performance

reasons, SHAD vectors currently do not provide STL-like

insert operations, which allow inserting a new element in any

position of the sequence. In fact, the standard behavior of the

STL insert functions prescribes that all the data beyond the

insertion point must be moved, in order to accommodate the

newly inserted data. While this is feasible when managing

small amount of data on a single node system, it would result

in severe performance penalties when working with big data,

especially on distributed system, which indeed represent the

main target of the proposed library. Updates are not affected

by these issues, and can be performed on any position of the

vectors.

c) Map: SHAD maps are distributed unordered hash-

maps that support concurrent insertion, update and dele-

tion. Supporting both concurrent insertion and deletions is

particularly desirable for streaming applications. Maps local

data is organized in buckets which can grow dynamically,

implemented as thread-safe linked lists. We achieve safety

through a relatively simple, but effective, locking scheme. In

case of insertion/deletion at a given position in a bucket, only

such position and the subsequent ones are locked, while all

the previous ones can be accessed. Update operations instead

do not prevent operations on any other positions. For space

efficiency, delete operations replace the element to be deleted

with the last element in the bucket, and free the slot of the

moved element. The keys space is partitioned using hashing at

two different levels: the first is needed to uniquely identify the

locality associated with a key, and the second level identifies

the associated bucket in the local storage. We currently use,

for both levels, the one-at-a-time Jenkins hash functions [13].

Listing 2 shows a code snippet in which a new Map instance

is created and populated.

d) Set: SHAD sets provide distributed unordered sets,

with same data layout and features of the map.

III. SHAD EXTENSIONS

SHAD extensions are high-level libraries built on top of

the lower layers of the SHAD stack, and/or by combining
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other extensions. In this work, we validate this design idea by

providing an example extension of a Graph Library. In order

to demonstrate SHAD flexibility, we implement two different

graph data-structures: a plain Compressed Sparse Row (CSR)

graph, and an index-based (Edge Index) representation. The

CSR implementation solely uses SHAD arrays, while the latter

combines SHAD maps and sets.

Both graph data-structures expose the same user-level inter-

face; the core visit operations offered in the API are:

• [async]ForEachEdge [asynchronously] execute a func-

tion for all the edges in the graph;

• [async]ForEachVertex [asynchronously] execute a func-

tion for all the vertices in the graph;

• [async]ForEachIncidentEdge [asynchronously] execute

a function for all the incident edges of a vertex in the

graph;

• [async]ForEachNeighbor [asynchronously] execute a

function for all the neighbors of a vertex in the graph;

CSR Graph: The CSR Graph represents the graph as

an adjacency matrix using a compressed sparse row format. A

CSR based graph representation is constituted by two arrays v̄
and ē). Given a graph G = (V,E), the array ē has length |E|
and stores contiguously the neighbor lists of all the vertices

v ∈ V . The array v̄ has length |V | + 1 and, for each vertex

v ∈ V , stores the starting and ending point of its neighbor list

in the ē array.

Edge Index Graph: Indexes can be used to conveniently

represent graphs. Our index-based graph implementation uses

a map of sets (storing the neighbor lists) as its underly-

ing storage. Given a graph G = (V,E), the map stores

key/value pairs of the form (vi, δ(vi)), where vi ∈ V and

δ(vi) = {v : (vi, v) ∈ E}. As aforementioned, the default

behavior of insert/update methods is to overwrite existing data,

if any; nevertheless, to support this representation, we use an

append insert/update policy, so that an insert operation in the

map would actually perform an insert in the storage used as

value (i.e., the set). This approach can be used in general to

implement multi-value associative containers.

The only difference, in terms of features, between the two

different implementations, is that the CSR Graph is a static

data-structure, while the Edge Index Graph is dynamic. This

means that our Edge Index Graph can dynamically grow and

shrink, and its API offers edge insert and delete methods.

This feature allows developing applications on streaming data.

It is important to notice that this limitation of the CSR

Graph is not due to our specific implementation, but to the

CSR representation itself. In fact, even if in principle it is

possible to update a CSR graph, it is typically not feasible in

practice, since in the worst case insert and delete operations

would require to update the whole data-structure (e.g., for

recomputing the offsets).

Graph Applications: We validate the effectiveness of

the SHAD design by developing two different applications on

top of the Graph extension: PageRank and Triangle Counting

(shown in Algorithm 1 and 2, respectively). We selected

them mainly because of their relevance (they represent critical

kernels in several more complex big data applications) and

because they are representatives of two different classes of

graph algorithms. Triangle Counting is indeed representative

of graph exploration and pattern matching algorithms, while

PageRank is a representative of vertex-centric algorithms,

operating mostly on vertices and their neighbor lists. They

also exhibit very different behaviors, especially in our current

implementation: Triangle Counting is completely data flow

driven and asynchronous (each triangle is matched indepen-

dently through parallel graph traversals), while PageRank is

phase synchronous (and thus potentially affected by high

synchronization costs).

We highlight that in this work we have purposely not

adopted any advanced algorithmic optimization or heavy data-

structure customization, with the objective of demonstrating

that SHAD allows to quickly implement both extensions and

applications, without necessarily renounce performance and

scalability. Listing 3 shows an example of how the three nested

loop of Algorithm 1 can be implemented with SHAD using

the CSR Graph. The Edge Index implementation differs only

in the type of the graph object.

Input: A graph G = (V,E)
Output: Number of unique triangles in G
Triangles = 0;

forall edges (i, j) ∈ E s.t. i < j do asynchronously

forall k ∈ δ(j) s.t. j < k do asynchronously

forall w ∈ δ(k) s.t. k < w do asynchronously

if w == i then

Triangles++;

end

end

end

end

return Triangles;
Algorithm 1: Triangle Counting Algorithm.

IV. EXPERIMENTAL RESULTS

In this section we validate our design and evaluate the

scalability and performance of our proposed SHAD frame-

work. All the experiments have been conducted on a cluster

of 24 nodes, equipped with two Intel Xeon E5-2680 v2 CPUs

working at 2.8 GHz (hyper-threading disabled) and 768GB of

memory per node. In all the experiments, we have abstract

the system using a locality for each socket of the allocated

nodes in order to improve intra-locality performance. We scale

our experiments up to 320 cores, distributed on 32 SHAD

localities. We start our analysis by evaluating the performance

of the SHAD core data-structures. For conciseness, we report

results of only a subset of them: Array, and Map. The choice is

motivated by the fact that these are the main building blocks

for our Graph Library extensions and also that Vectors and

Sets exhibit very similar behavior when compared to Arrays

and Maps respectively.
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Input: A graph G = (V,E)
Output: Ranks for all the v ∈ V
dump = 0.85;

baseRank = (1 - dump) / |V |;
forall vertices v ∈ V do asynchronously

rank[v] = 1/|V |;
end

error = 0;

repeat

error = 0;

in[|V |];
out[|V |];
forall vertices v ∈ V do asynchronously

out[v] = rank[v] / |δ(v)|;
forall j ∈ δ(v) do asynchrnous

in[v] += out[j];

end

oldRank = rank[v];

rank[v] = baseRank + dump * in[v];

error = |rank[v] - oldRank|;

end

until error < ε;
return rank;

Algorithm 2: PageRank algorithm.

1 shad::rt::Handle handle;

2

3 using GraphType = shad::CSRGraph<size_t>;

4 // ... or using GraphType = shad::EdgeIndexGraph<size_t>;

5

6 // G is the Object Identifier of the Graph

7 auto GraphPtr = GraphType::GetPtr(G);

8 GraphPtr->AsyncForEachEdge(

9 handle,

10 [](shad::rt::Handle & handle,

11 const size_t & i, const size_t & j,

12 GraphType::ObjectID & G) {

13 if (i >= j) return;

14 auto GraphPtr = GraphType::GetPtr(G);

15 GraphPtr->AsyncForEachNeighbor(

16 handle, j,

17 [](shad::rt::Handle & handle,

18 const size_t & j, const size_t & k,

19 GraphType::ObjectID & G,

20 const size_t & i) {

21 if (j >= k) return;

22 auto GraphPtr = GraphType::GetPtr(G);

23 GraphPtr->AsyncForEachNeighbor(

24 handle, i,

25 [](shad::rt::Handle & handle,

26 const size_t & i,

27 const size_t & w, const size_t & k) {

28 if (w != k) return;

29

30 TriangleCounter++; // atomic counter.

31 }, k);

32 }, G, i);

33 }, G);

34 shad::rt::waitForCompletion(handle);

Listing 3. Triangle Counting example with SHAD.
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Figure 2. Insert/Update performance of SHAD Arrays compared to C/C++
plain arrays of integers.
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Figure 3. Insert/Update performance of SHAD Maps compared to STL
unordered maps of 〈integer, integer〉 pairs.

Performance on a Single Locality: All SHAD data-

structures are designed to be thread-safe, allowing concurrent

access at both inter and intra-locality levels. In order to

quantitatively measure the overhead introduced to achieve

thread-safety, we compare insert/update performance of SHAD

data-structures against their non-thread safe counterparts.

Figure 2 compares performance of SHAD Arrays against

C/C++ plain arrays, varying the size of the data-structures from

10 Millions to 10 Billions elements (integers). For each data

size we perform 3 experiments: serial insertion in the C array,

parallel insertion in the C array (using the ForEach method

of SHAD’s abstract runtime interface) and parallel insertion

in the SHAD array. For the serial update, as expected, we

do not see any substantial throughput variation, even though

experiments show a slight degradation for bigger sizes. When

looking at parallel execution instead, we observe, for both the

C and SHAD arrays, significant throughput increase especially

when the size of the container grows from 10 to 100 Millions
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Figure 4. Strong scaling analysis of the SHAD Array when inserting 10

Billion elements (integers).

elements. When comparing the two data-structures at bigger

sizes, we observe similar performance: this demonstrates that

SHAD arrays introduce very limited overhead when working

on a single locality.

Figure 3 compares performance of SHAD maps against

STL unordered maps. In this case, when evaluating parallel

accesses, we only consider values updates: STL maps are

indeed not thread safe, and thus, concurrent insertions of key-

value pairs can lead to data-races and undefined behaviors.

As for the previous experiments, we observe the biggest

throughput increase when increasing the size from 10 to 100

Millions elements, after which, we report smaller performance

variations. As for the arrays, SHAD maps and STL unordered

maps exhibit comparable performance.

Performance on Multiple Localities: We have analyzed

the performance and the scalability of the SHAD Array and

Map varying the size of the input data from 10 Millions

to 10 Billions elements. Figure 4 and Figure 5 illustrate

performance and scalability of the SHAD Array. Experimental

results show that the Array scales almost linearly for both

weak and strong scaling, with a maximum throughput of 65.5

Billion operations per second. Figure 6 and Figure 7 show

results for the performance and scalability of the SHAD Map,

for Insert and Update operations.

The experiments show that Insert operations are consid-

erably more expensive than the Updates. The difference in

performance between the two operations is caused by the

additional cost of the memory allocation for the buckets, and,

of the locking scheme during insertions. In fact, as detailed

in Section II-C, insert operations lock all the subsequent

positions of the destination bucket with the consequence that,

in the case of collisions, multiple insertions in the same

bucket may be serialized. Nevertheless, our measures show

that both operation have almost linear scalability until we

reach saturation (for the updates) at 1 Billion of operations
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Figure 5. Weak scaling analysis of the SHAD Array when inserting 625

Milion elements per node with the last point inserting 10 Billion integers
overall.

per second.

Graph Applications: Figure 8 illustrates performance

and scalability (strong scaling) of our PageRank implemen-

tation when varying the number of cores. For these ex-

periments, we use a scale-20 Erdös-Rényi graph (1048576

vertices, 21808992 edges) from [14]. Results show overall

good scalability when using both the CSR Graph and the Edge

Index graph implementations, especially with higher core-

counts. Nevertheless, when transitioning from 40 to 80 cores,

we see relatively lower performance gains for the Edge Index

Graph, and even performance degradation for the CSR Graph.

This is due to the increasing pressure on the network, which is

not well compensated by the increased number of computing

resources. The Edge Index Graph is less affected by this issue,

because in our current implementations the neighbors list of

a vertex is co-located with it, thus improving locality.

Figure 9 and Figure 10 illustrate performance and scalability

(strong scaling) of the Triangle Counting applications. In ad-

dition to our SHAD implementation, we also show results ob-

tained with a custom, low-level and optimized implementation

of the algorithm, developed using the complete GMT runtime

library, including its Partitioned Global Address Space (PGAS)

support. For these experiments, we use a scale-23 Erdös-

Rényi graph (8388608 vertices, 200622558 edges). As shown

in Figure 9, the CSR Graph implementation provides overall

better scalability than the Edge Index counterpart, which in

this case, suffers performance degradation when shifting from

40 to 80 cores (but still providing good scalability with higher

core counts). Nevertheless, the Edge Index implementation

provides much better performance, thanks to its better data-

locality.

Figure 10 details the performance characteristics of the

SHAD (Edge-Index) implementation and the GMT imple-

mentation only, facilitating their comparison. The custom

GMT implementation, as expected, is faster than the high-
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Figure 6. Strong scaling analysis of the SHAD Map when inserting and
updating 10 Billion 〈integer, integer〉 pairs. Results are plotted in log scale.
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Figure 7. Weak scaling analysis of the SHAD Map when inserting and
updating 625 Million 〈integer, integer〉 pairs per node with the last point
inserting 10 Billion pairs overall. Results are plotted in log scale.

level SHAD implementation, which, however, still provides

comparable performance. This is a valuable result, especially

when taking into account the substantially different devel-

opment efforts. In fact, the GMT implementation has been

developed in weeks, while the SHAD implementation has

required about an hour. This clearly highlights that SHAD

allows to quickly implement extensions and applications, with

improved productivity and limited performance loss when

compared to custom solutions.

V. RELATED WORK

In previous work [5], [6], [15], we have proposed GEMS,

the Graph Engine for Multithreaded System. Originally de-

signed as a SPARQL [16] database, GEMS currently sup-

ports GraQL [17] as input query language, and adopts an

attributed graph hybrid data model. GEMS and SHAD have

40 80 160 320

Number of cores

0

100

200

300

400

500

E
x
e
c
u
ti
o
n
T
im

e
(s
e
c
)

CSRGraph

EdgeIndex

Figure 8. Strong scaling of PageRank using the Edge Index and the CSRGraph
to store an Erdös-Rényi Graphs with scale factor 20.
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Figure 9. Strong scaling of the Triangle Counting on a Erdös-Rényi Graphs
with scale factor 23 using the Edge Index, the CSRGraph and a custom
implementation using only GMT.

some common design features, and in particular, the idea of

abstracting the underlying details of the machine providing

an abstract runtime interface. One key contribution of SHAD

over previous effort, is the identification of a streamlined

set of requirements imposed on the runtime system, so that

SHAD can be easily mapped on a broader set of platforms.

Another common characteristic of the GEMS and SHAD

software stacks is that they both feature a distributed data-

structure layer. However, GEMS data structures (i.e., Tables

and Graphs) are specifically tailored to support GRAQL query

execution over attributed graphs. SHAD’s data-structures layer

instead is designed to support general purpose computation

and analytics workflows. As shown in this work, such data-

structures can also be combined to compose higher level data-

structures and libraries, such as the proposed graph SHAD
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Figure 10. Detail of the strong scaling of the Triangle Counting on an
Erdös-Rényi Graphs with scale factor 23 using the Edge Index and a custom
implementation using only GMT.

extension.

Similar design principles are adopted in [18], which pro-

poses a C++ template library of distributed data structures and

parallel algorithms. Nevertheless, such solution adopts a fun-

damentally different programming model. It indeed proposes

a Single Program Multiple Data (SPMD) programming model

with hierarchical additions, which, from the user perspective,

is closer to the MPI programming paradigm. SHAD instead

offers a shared memory programming environment.

The Standard Template Adaptive Parallel Library

(STAPL) [19] is a framework supporting the design

of parallel programs for both shared and distributed

memory parallel systems. The core STAPL library provides

pContainers (distributed data structures) and pAlgorithms

(parallel algorithms). pContainers are thread-safe distributed

container that provides parallel methods that can be

executed concurrently. Similarly, with SHAD data structures,

pContainers offers a shared object view that abstract the

physical data distribution. pAlgorithms are the parallel

equivalent of STL algorithms. Similarly to STL algorithms

that are written in terms of iterators, STAPL algorithms

are written in terms of views that enable to offer multiple

interfaces for the same pContainer (e.g., row-major or

column-major view for a matrix). Intel Threading Building

Blocks (TBB) [20] share the same STL philosophy of STAPL

and it implements some of STAPL concepts, but it is limited

to shared memory systems. SHAD instead, while providing

a shared memory programming environment, overcomes this

limitation.

Presto [21] proposes an extension to the R ecosystem to

efficiently process large and sparse data sets on distributed

systems. It introduces the concept of distributed arrays (dar-

ray) into the R programming language. Presto distributed

arrays are partitioned using a user provided policy on creation

(columns, rows or blocks) and can be reconstructed using a

split construct. They are read-shared by multiple concurrent

tasks but updates needs to be made explicitly visible to other

tasks by calling an update function. Differently, the SHAD

library advocates a more transparent and shared memory-like

programming model where the not uniform data access time

is hidden through fine grained multi-threading.

UPC++ [22] and Co-Array C++ [23] implement a PGAS

approach. While Co-Array C++ offers a programming in-

terface that provides a strict local-view of objects, UPC++

provides global pointers and shared arrays. SHAD extends

the features offered by these approaches by providing a wider

set of distributed data structures and efficient access methods

while, at the same time, hiding the complexity of distributed

systems.

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced SHAD, the Scalable High-

performance Algorithms and Data-Structures library. SHAD

aims at facilitating the development of big data, high per-

formance applications, by providing the users with a high-

level shared-memory programming environment, and a set

of general purpose data-structures with interfaces inspired by

common programming languages libraries.

SHAD data-structures are thread-safe, and designed to ac-

commodate and process significant amount of data. They can

also be combined to develop additional data-structure libraries,

called SHAD extensions. We have demonstrated SHAD flex-

ibility by proposing a graph library, able to process CSR and

EdgeIndex graphs, as an example of SHAD extension. On top

of that, we have developed two applications, Triangle Counting

and PageRank. Experimental results validate our approach,

demonstrating good performance and scalability of both data-

structures and user-level applications. When compared to

custom, optimized applications, SHAD provides comparable

performance with substantially lower development efforts.

In future work we will extend the set of SHAD extensions

and supported runtime systems and architectures, so to further

improve SHAD flexibility and portability. We also plan to

investigate the adoption of non-volatile storage for the data-

structures, so to facilitate data-recovery and fault tolerance.
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