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An increasing number of utilities are conducting
climate vulnerability and adaptation studies
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Building energy resilience includes risk
assessment, strategy development and execution
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Goal

« Evaluate present-day infrastructure, design specifications,
and procedures against expected climate change

* ldentify adaptation options to build resilience

Project Example:

D U k — E ner ICF’'s role Climate Vulnerability Climate Adaptation Stakeholder
g y Analysis Planning Engagement

Climate Study

* Developed downscaled climate projections out to mid-
century for Duke's service territory
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* ldentified adaptation options to build resilience to
climate risks
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» Developed a prioritization framework which
incorporates flexible adaptation and signposts to guide
execution over the planning horizon
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A pubilicly filed Climate Resilience and Adaptation Report
that outlines a set of recommendations for potential
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https://www.duke-energy.com/-/media/pdfs/our-company/carolinsresiliencetransdiststudyfinal.pdf?rev=96f3343e986045c8b264d7a9e024edda

Some critical gaps regarding operational
reliability and resilience

* Poor understanding of asset health and failure rates, often due to lack of data
* Deterministic design standards (IEEE, NESC), while climate risk is probabilistic

* Lack of a standard definition and way to measure resilience

Gaps In understanding of extreme event risks.

* For example, the 2021 Spokane, WA heat wave, which was a 1-in-1000 year event,
resulted in significant overloads to Avista grid infrastructure which caused over 20,000
customer outages.
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Risk-Informed Analytics for Power Grid Resilience

af the asset, regional, and system level

Hiba Baroud, Ph.D.
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Predicting risk to inform
decisions at the assef leve/



Risk-Aware Market Clearing for Power Systems

Obiedive: POWEI‘ grid I‘iSk munﬂgemenf Uncertainty Risk Score

Quantification Development

* Address varying demand, supply and price
* Hourly, daily, seasonal
* Mix of conventional and renewable sources

4 & , > Asset Mix
* Different decision horizons: One day to 15 min Optimization

Quantify uncertainty and risk

Develop risk-informed optimization

Use machine learning to enable fast decisions

Colluborate with industry (MISO)

Machine
Learning
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* Jointly forecast wind/solar generation and load
demand time series for multiple time steps into the
future

° p(XFuture) — pF(XFutureleast)

* Forecasting is used to support stochastic unit
commitment and dispatch for day-to-day operations
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Probabilistic validation metrics
* (ontinuous Ranked Probability
Score (CRPS)

CRPS (Scaled Mw)

CRPS (Scaled MW)

and joint probabilistic forecasting of stochastic power grid variables. Applied Energy, 357, p.122438.
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Analyzing risk
at the regional level
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Higher population below poverty line — Higher distance to food hub —

(a) Power vulnerability and percentage of (b) Power vulnerability and distance to
people below poverty level closest food hub

Houston, Texas

* Highest food insecurity
rate in the country

* Vulnerable to hurricanes,
storms, and flooding

Wehbe, C. and Baroud, H., 2024. Limitations and considerations of using composite NS
indicators to measure vulnerability to natural hazards. Scientific Reports, 14(1), p.19333. Xy



Managing risk
at the Sysiem (of interdependent networks) level



The Challenge

We know more about
individual systems and less
about their connections




Power Grid

Proposed solutions

* Learn interdependencies

* Data-driven methods to learn
infrastructure interdependencies

Time step

ML‘J/ Resilience of infrastructure
systems is improved by 60%
* Simulate synthetic interdependencies

* Generate synthetic interdependent
critical infrastructure networks (SICIN)
that complete real-world data on
infrastructure systems

Yu, J. and H. Baroud. 2019. Modeling Uncertain and Dynamic Interdependencies of Infrastructure
Systems Using Stochastic Block Models. ASCE-ASME Journal of Risk and Uncertainty in Eng.

Wang, Y., Yu, J.Z. and Baroud, H., 2021. Generating synthetic systems of interdependent
critical infrastructure networks. IEEE Systems Journal, 16(2), pp.3191-3202.



Energy generation (GWh)

Long-term risk Error in water inflow forecast in Blue Mesa
WCI'l'er El‘lel‘gy reservoir in the Colorado River Basin
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Gaps and future directions

I
i * Shared Socioeconomic
; Pathways (SSPs)

* Return on investment in climate N
mitigation and adaptation
e Why dO ”? And hOW mU(h dOBS ” Johnson, P. M., et al. (2024). How flood-resilient port infrastructure can
co St? reduce economic impactsof climate change: A case study of the U.S. inland

waterways? [Undergyiew]

* Decarbonization and grid resilience
* A win-win situation

oA

®

* Coordination across sectors and
stakeholder engugement

* Co-producing useful and usable
research
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