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Center for Environmental Systems (CES)

• Mission: basic and applied research for
advanced technology and innovation in
environmental engineering.
• Research: water, energy, and
sustainability with applications to:
wastewater and drinking water treatment,
renewable energy, and CO2 utilization and
storage.
• People: 10 faculty from the Schaefer
School of Engineering; 10 PhD students, 5
postdocs; and 2 project managers.
• Research funding on average is: $ 3M per
year.
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Prigiobbe research group

Valentina Prigiobbe Foam-nanoparticle transport 3 / 49



Urban hydrology

Nuisance flooding due to groundwater
Groundwater modeling Sewer modeling Sewer flooding Street flooding

Liu, Su, and Prigiobbe (2018) Water 10(12), 1774.
Su, Liu, Beheshti, and Prigiobbe (2020) Environ Sci Pollut Res 27, 14288—14298
Su, Belvedere, Tosco, and Prigiobbe (202X) Studying nuisance flooding due to groundwater in a coastal urban area. In review.
Liu, Ramirez-Marquez, and Prigiobbe (202X) Combining a statistical model with machine learning to predict groundwater flooding
(or infiltration) into sewer networks. In review.
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Energy and water
CO2 mineralization for carbon utilization and storage

Precipitation of nesquehonite Algae growth using nesquehonite

Prigiobbe (2018) J. Env Chem Eng 6 930–936.
Ye, Abraham, Christodoulato, and Prigiobbe (2019) Energy Fuels 33 8843–8851.

Valentina Prigiobbe Foam-nanoparticle transport 5 / 49



Energy and water
Reactive transport in porous media

Produced water

Ye and Prigiobbe (2018) J Contam Hydrol 209 24–32.
Ye and Prigiobbe (2020) Wat Res 185 116258.

Virus and bacteria

Zhang, Zabarankin, and Prigiobbe, (2019) 127, 252–263.
Zhang and Prigiobbe (202X). Influence of salinity on E. coli trans-
port behaviour. In review.
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What is a foam?
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When is foam flooding employed?

Enhanced-oil recovery

Rossen. Foams in enhanced oil recovery, Marcel Dekker, New York (1996).
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Better sweep efficiency and reduced fingering
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Smoothing of heterogeneities

Conn, Ma, Hirasaki, and Biswal (2014) Lab on a Chip 14 3968.
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When is foam flooding employed?

Foam flooding for DNAPL removal

• Formation of foam in
high-permeability zones to divert
surfactant solution to zones of
lower permeability.
• Reduction of DNAPL saturation
from 22 % to 0.03 %.
• The low water content (∼ 5%)
reduces contaminant mobilization.

Hirasaki et al. (1997) Field Demonstration of the Surfactant/Foam Process for Aquifer Remediation, SPE 39292.
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When is foam flooding employed?
Foam flooding for the delivery of calcium polysulfide (CaS5)

• Delivery of amendment with water for
the immobilization of metals and
radionuclides in the vadose zone is
inefficient and can mobilized the
contaminants.

• The delivery of CaS5 with foam to
immobilize Cr(VI) was reduced from
70-98% when conventional method
were used to 27% when foam
combined with foam-blocking was
applied.

• Reaction: 2CrO2−
4 + 3CaS5 + 10H+ → 2Cr(OH)3 + 15S(s) + 3Ca2+ + 2H2O

Zhong, Qafoku, Szecsody, Dresel, and Zhang (2009) Vadose Zone J. 8 976–985.
Zhong, Qafoku, Szecsody, Dresel, and Zhang (2009) WM2009 Conference, March 1-5, 2009, Phoenix, AZ
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How a foam is stabilized
Surfactant

• Reduction of surface tension/energy.
• Elasticity of the gas-liquid interface.

Particles

• Reduction of gas diffusion.
• Reduction of drainage.
• Increase of the critical capillary pressure

(P ∗c ).
Image from: Martinez et al. (2008) Soft Matter 4.
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Nano-remediation with foam

Nano-remediation is based on the use of engineered nanoparticles for in situ
degradation, transformation, or immobilization of pollutants.
Using foam, nanoparticle mobility control is improved and water is reduced.
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Mechanistic model of foam transport in porous media in
the presence of nanoparticles
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Scheme of the model

Li and Prigiobbe (2019) Transp Porous Media 131 269—288.
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Modeling foam transport in porous media

Governing equations∗
Fractional flow equation

φ
∂Sw

∂t
+ ut

∂fw
∂x

= 0,

Population balance equation (PBE) for bubbles

φ
∂(Sgnf )

∂t
+ ut

∂(fgnf )

∂x
= φSg(rg − rc),

• Sw and Sg are the water and the gas saturations, (-);
• φ is the porosity, (-);
• ut is the total flux, where ut = uw + ug, m/s;
• nf is the bubble concentration, #/m3;
• rg and rc are the rates of generation and coalescence, #/(m3s);
• fw is the water fraction, (-).

∗Kovscek et al., Chem. Eng. Sci. 50(23), 1995; Kam and Rossen, SPEJ 8, 2003.
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Modeling foam transport in porous media
Constitutive equations†

Rate of generation

rg = Cg(∇p)m,

Cg and m are model parameters.

Rate of coalescence

rc = Ccnf

(
Sw

Sw − S∗w

)n

,

Cc and n are model parameters and S∗w is the
minimum water saturation.

†Gauglitz et al., Chem. Eng. Sci. 57, 2002. Khatib et al., SPE Reservoir Eng., 1988.
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Modeling nanoparticle transport in porous media
Governing equations of nanoparticles transport

∂(φSwcw + ρbR)

∂t
+ uw

∂cw
∂x
−Dφ∂

2(Swcw)

∂x2
= kbSwcw,

∂(φSgcg)

∂t
+ ug

∂cg
∂x

= −kbSwcw,

• c is the nanoparticle concentration, g/m3; R is the nanoparticle retention, g/kg; ρb
porous medium density, kg/m3; D hydrodynamic dispersion, m2/s; kb
adsorption/desorption rate, g/m3s.

Governing equations of nanoparticles aggregation ‡

∂np(t, x)

∂t
=

1

2

∞∫
0

β(t, x− y, y)np(t, x− y)np(t, y)dy − np(t, x)
∞∫
0

β(t, x, y)np(t, y)dy,

• np is the number of nanoparticle, #/m3; β is the aggregation kernel; x and y are
characteristic length of the particles, m.

‡Kumar and Ramkrishna, Chem. Eng. Sci.(1996) 51 1333–1342.
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Modeling nanoparticle transport in porous media

Constitutive equations
Attachment/detachment

ρb
∂R

∂t
= kattφc− ρbkdetRmax,

• katt and kdet attachment and
detachment coefficients, (-);

• Rmax, maximum attachment capacity,
g/kg.

Aggregation kernel§

βj,k =
2kBT

3µWj,k
(rj + rk)

(
1

rj
+

1

rk

)
,

Wi,k = (rj + rk)

∫ ∞
r

e(VT /KBT )

r2
dr,

• VT , total interaction energy, i.e,
electrostatic, van der Waals, and
magnetic energy.

§Hunter and White, Foundations of Colloid Science, Clarendon Press, 1987
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Effect of magnetic properties of the nanoparticles

Li and Prigiobbe (2019) Transp Porous Media 131 269—288.
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Comparison of the model with literature data

• Q = 1.3 mL/min,
• rNP = 54.5 nm,
• k = 1.2 × 10−12 m2,
• c0 = 3 g/L,

Phenrat et al. (2007) Environ. Sci. Technol. 41 284.;
Ding et al. (2013) J. Env. Eng. 139(9) 1206.
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Simulations of nanoparticle carried with foam
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Simulations of nanoparticle carried with foam
Effect of permeability
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Simulations of nanoparticle carried with foam
Pressure profiles

• The pressure within the domain increases with the total flux up to 500 kN/m2

acceptable for applications of foam flooding in the shallow subsurface.
• For optimal design, aquifer properties should be considered to maximize delivery,

minimize the duration of the operation, and contain the pressure.
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Experiments of foam generation in the presence of
nanoparticles using a microfluidic system
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Experiments

Li and Prigiobbe (2020) Chem Eng Sci 215, 115427.

Operating conditions:
• Saturation with a brine of either

surfactant (SDS, sodium dodecyl
sulfate), nanoparticles (fumed silica,
Nycol), or a combination.

• Nanoparticle of ∼ 50 nm average
diameter.

• Injection of N2 at the flow-rate of
0.1-0.5 mL/min.

• Experiments were recorded with a
high-speed camera in six locations
(O1 through O6) and a pressure
transducer.
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Experiments

Foamability and stability tests
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Experiments
Images of bubble transport across the microchip
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Image processing

• An algorithm based on convolutional neural network (CNN) was implemented for
bubble recognition within the recorded images.

• Approximately 6,000 bubbles were labeled as a training data set corresponding to 60
images.

• Hundreds of bubbles in an image could be recognized within one second by using GPU
acceleration (Quadro K620 GPU).
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Modeling
Generation rate

rg =
dN(t)

dt

1

V
,

Bubble number evolution

N(t) =
6∑
i=1

ni(t)

ai
Ai,

where:
t is time, s.
N(t) is the total number of bubbles, #/s.
ni(t) is the bubble number in the ith-view area,
#/s.
ai is the ithview area and Ai is the ith-section
area, m2.
V is the porous medium volume, m3.
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Results

Total number of bubbles (N , #/s)
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Results

Transport tests
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Foam generation rate

Generation rate, rg (#/m3s)

rg ∝ (∇P )α,

where:
∇P is the pressure gradient, MPa.
α is a model parameter.
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Experiments of foam transport using a column-flood
system for model verification
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Experiments

Li and Prigiobbe (202X) Modeling and measuring foam transport in the
presence of nanoparticles. In preparation.

Operating conditions:
• Saturation with a brine containing

either surfactant (CTAB, Cetyl
Trimethyl Ammonium Bromide),
silica nanoparticles (US3437, US
Research Nanomaterials), or a
combination.

• Nanoparticle of ∼ 50 nm average
diameter.

• Injection of N2 at the flow-rate of
0.1–1.0 mL/min.

• Experiments were monitored with a
pressure transducer and sampled
collected for nanoparticle
concentration determination.

Valentina Prigiobbe Foam-nanoparticle transport 37 / 49



Results
Foamability and stability tests
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Results
Transport of foam stabilized with only surfactant
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Results

Transport of nanoparticles
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Results
Transport of foam stabilized with surfactant and nanoparticles, cw = 5 g/L

ug and uw are the rates of the gas and the water.
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Results
Transport of foam stabilized with surfactant and nanoparticles, cw = 1 g/L
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Results

Effect of total flow rate (ut, cm3/min) at fg = 85.7 %

Total flow rate: ut = ug + uw.
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Summary and conclusions
• The use of foam has the potential to improve the efficiency of
conventional remediation methods for contaminated sites including
amendment delivery and nano-remediation where reactive nanoparticles
(NPs) are used.
• Challenges are the design and the description of the process. A
mechanistic model coupling foam and nanoparticle transport was
developed and verified with experiments.
• Simulations show a very stable high-quality foam can be formed using
NPs even in a low permeability medium within the shallow subsurface.
• Experiments agree very well with the model and show NPs can be
delivered with high-quality foam and much faster when carried by bubbles
than by water alone.
• Future work will focus on the extension of the model to account for
chemical reactions and heterogeneity.
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How foam is generated

• Snap-off. As the bubble
expands, Pc decreases favoring
the water flow into the throat.
Under a critical Pc value a new
gas bubble forms.

• Lamella division. As a bubble
flows through separate
channels one lamella divides
into two lamellae.

• Leave behind. The liquid is
constrained into a lamella
which might rapture or stay
stable. It occurs below critical
flow velocities and forms course
foam.

Ransohoff and Radke (1988) J Reservoir Eng of SPE
3, 573–585.
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Results

Transport tests
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Nanoparticle at the bubble interface
• Particle size, shape, hydrophobicity/wettability, concentration, capillary attraction, and

solution composition are the main factors for foam stabilization.
• Flocculation between the armored bubbles and the unadsorbed particles and particle

packing reduces drainage and increases foam strength.

Configurations Gibbs free energy of particle desorption

Pugh (2016) Bubble and Foam Chemistry. Cambridge.
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Application of foam for environmental remediation at the
field scale
Foam as a blocking agent

Portois et al. (2018) Transp Porous Med 124 787–801.
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