

Understanding Environmental Site Conditions: What do we need to know to select and implement effective remedies?

August 11, 2020

Michael Truex Senior Project Manager Characterization & Remediation Earth Systems Science Division

PNNL is operated by Battelle for the U.S. Department of Energy

Seminar Overview

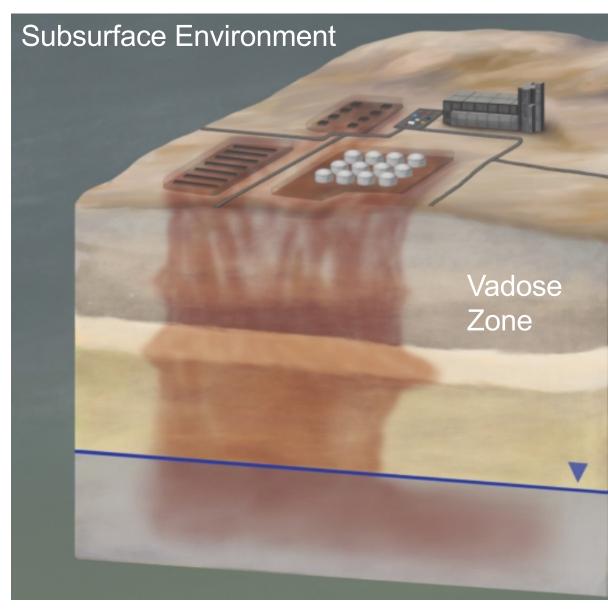
Objective: Identify an approach and resources for managing characterization and remediation at complex sites

Take-aways from today's seminar:

?

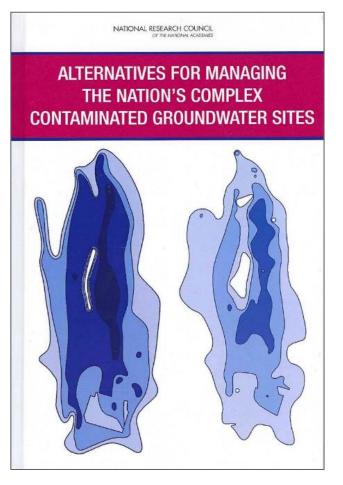
Challenge: Determining the level of detail needed to provide technical defensibility for remediation decisions at complex sites.

Approach: Objectives- and interpretation-driven site investigation and remedy implementation using technical guidance resources.


Impact: Facilitate remedy decisions and effectively manage complex sites.

Environmental Remediation Context

- Describe the contamination issue
- Evaluate risk and determine the mitigation approach
- Implement remediation, evaluate performance, adapt as needed, and determine stopping point



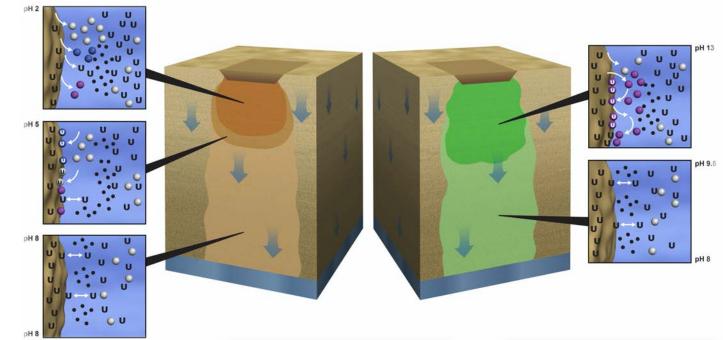
Groundwater

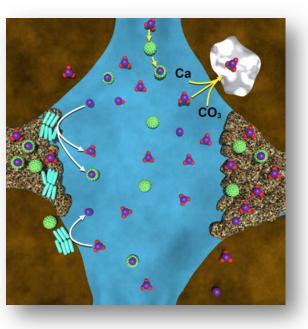
Remediation Challenges

National Research Council 2013

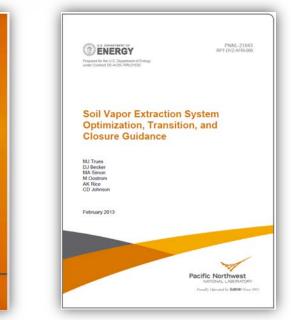
This ITRC guidance on the Remediation Management of Complex Sites provides a recommended holistic process for managing complex sites, termed 'adaptive site management'. This process is comprehensive, flexible, and iterative. It is wellsuited for sites where there is significant uncertainty in remedy performance predictions. Adaptive site management includes

http://rmcs-1.itrcweb.org




Categories of Challenges

- Coupled Hydrogeochemical Dynamics
 - Groundwater Surface Water
 - (Deep) Vadose Zone Groundwater
- Interaction of Biogeochemistry and Contaminants
 - Co-mingled contaminants
 - Sorption behavior and reactions
 - Persistent/recalcitrant contaminants
 - Extreme environments/contaminant discharge chemistry
- Exit Strategies
 - Active to passive
 - Current to long-term management
 - Adaptive site management steps



Performance Assessment for Pump-and-Treat Closure or Transition

September 2015
M.J. Truex C.D. Johnson D.J. Becker
M.H. Lee M.J. Nimmons
A A DEMARTMENT OF ENERGY Peparel for the U.S. Department of Energy under Central DE ACCE-24007829

Truex et al. 2013

Center for the Remediation of Complex Sites

The Center for the Remediation of Complex Sites (RemPlex) is a Pacific Northwest National Laboratory (PNNL) platform that couples unique core competencies and expertise with stateof-the-art facilities and physical assets to develop, mature, and deploy advanced technologies to solve complex issues of contaminated subsurface environments.

LEADERSHIP

CAPABILITIES

WORKING WITH US

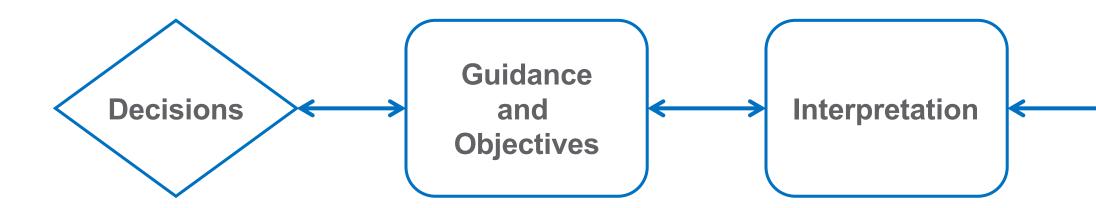
RESOURCES : NEWS AND : HIGHLIGHTS


www.pnnl.gov/projects/remplex

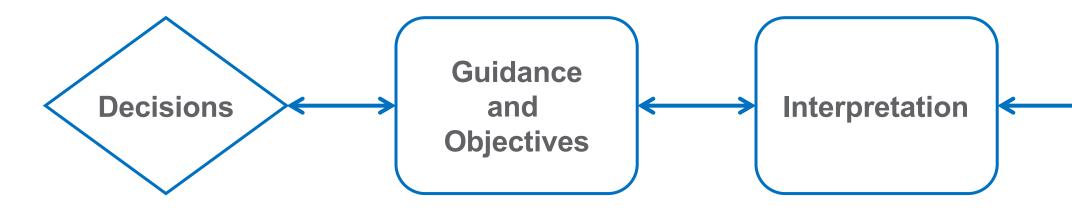
EVENTS

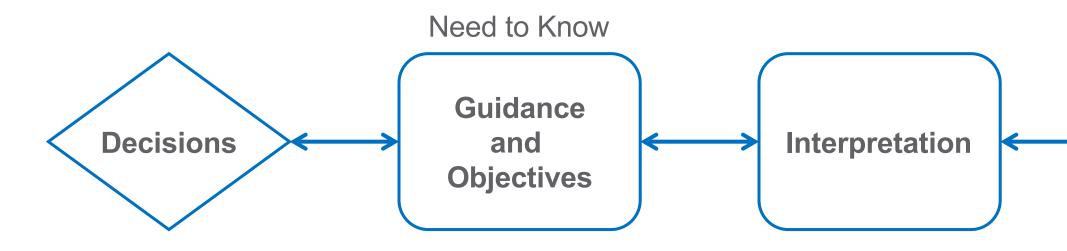
FACILITIES & CENTERS

Q


Approach:

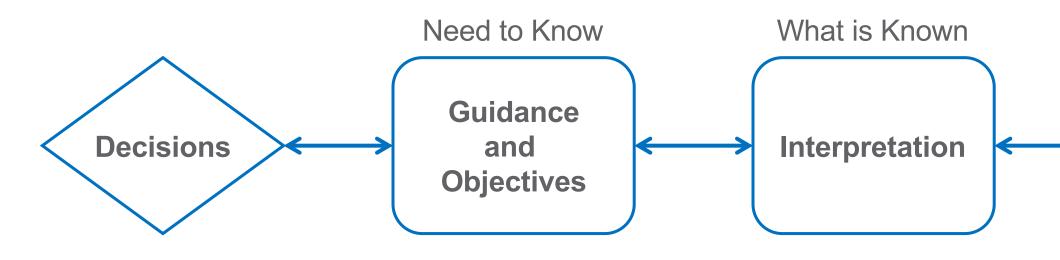
OF COMPLEX SITE @ PNNI


• Using technical guidance to define an objectives- and interpretation-driven approach focused on supporting remedy decisions can facilitate identifying characterization and remediation actions for complex sites



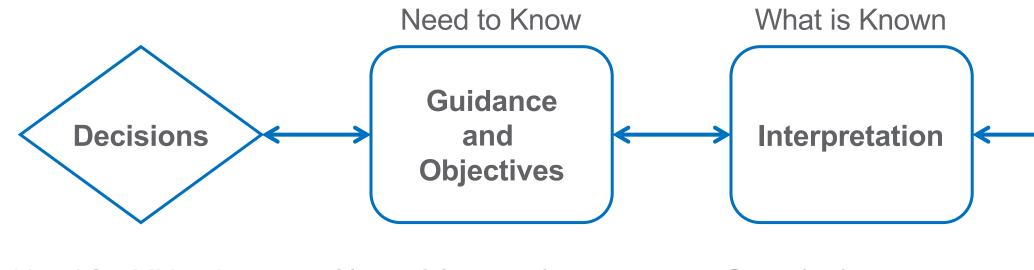
- Need for Mitigation
- Determine End State
- Select Remedy
- Manage/Optimize Remedy
- Remedy Closure




- Need for Mitigation
- Determine End State
- Select Remedy
- Manage/Optimize Remedy
- Remedy Closure

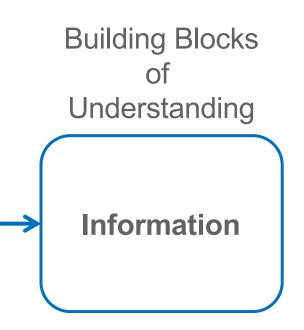
- Natural Attenuation
- EPA GW Road Map
- ITRC Complex Sites
- Adaptive Site Management
- Performance Assessment
- End State
- Data Quality Objectives

- Need for Mitigation
- Determine End State
- Select Remedy
- Manage/Optimize Remedy
- Remedy Closure



- Natural Attenuation
- EPA GW Road Map
- ITRC Complex Sites
- Adaptive Site Management
- Performance Assessment
- End State
- Data Quality Objectives

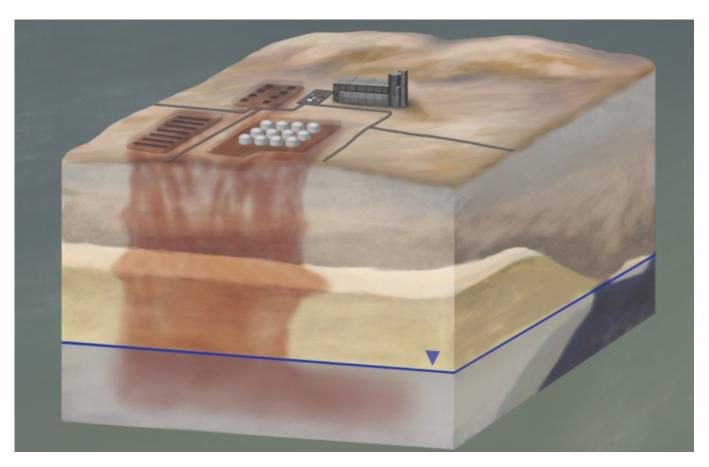
- Quantitative Conceptual Site Model
- Remedy Performance and Optimization Evaluations
- Predictive Modeling
- Data Analytics



- Need for Mitigation
- Determine End State
- Select Remedy
- Manage/Optimize Remedy
- Remedy Closure

- Natural Attenuation
- EPA GW Road Map
- ITRC Complex Sites
- Adaptive Site Management
- Performance Assessment
- End State
- Data Quality Objectives

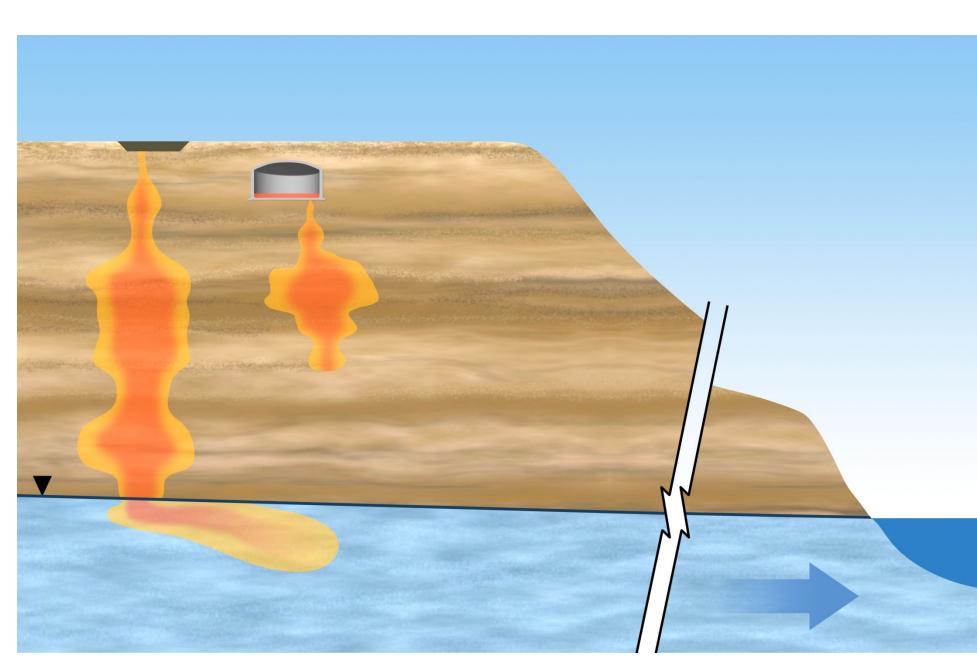
- Quantitative
 - Conceptual Site Model
- Performance and Optimization
 Evaluations
- Predictive Modeling
- Data Analytics


- Site Properties
- Hydrology
- Attenuation Processes
- Remediation Processes
- Modeling Parameters
- Monitoring Data

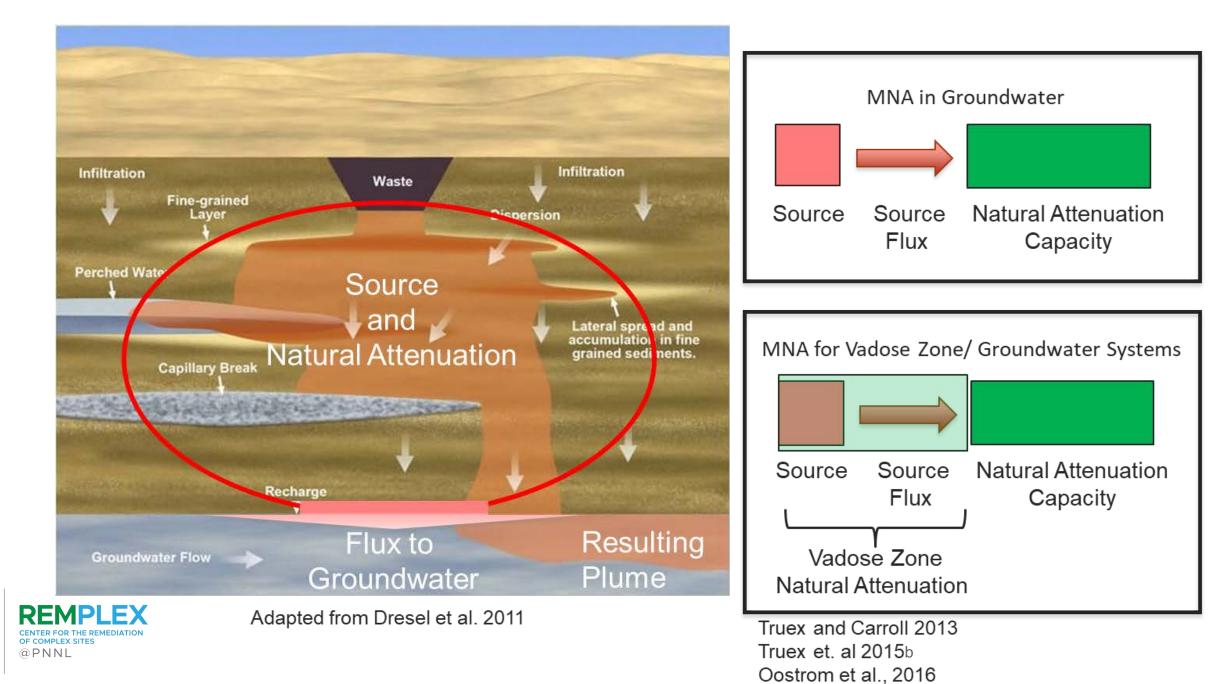
Characterization: What do we need to know for contaminant mobility and controlling processes?

Field-Scale Processes and Impacts

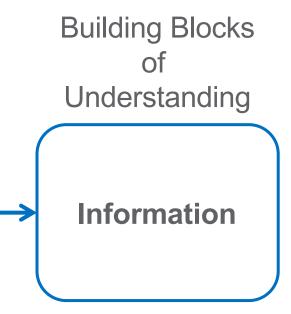
Underlying Controlling <u>Processes</u>



Hanford Site Example: Sources in the Vadose Zone


- Groundwater is a concern for contamination due to risk of exposure
- Contaminants in the vadose zone are a potential source to groundwater
- How do we evaluate the strength of this source?

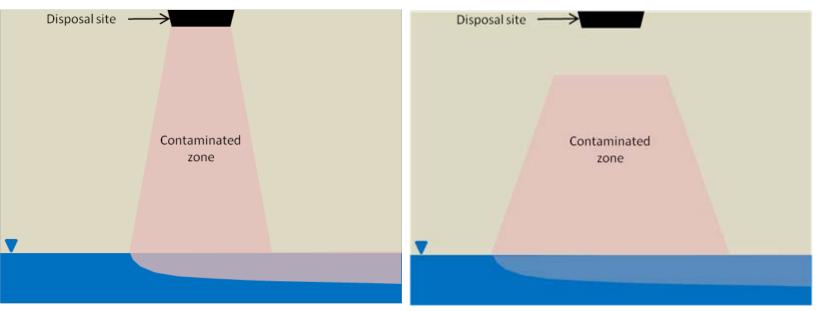
Vadose Zone Processes

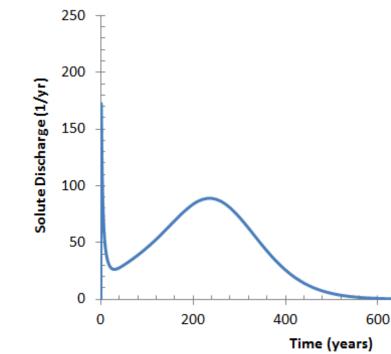


- Need for Mitigation
- Determine End State
- Select Remedy
- Manage/Optimize Remedy
- Remedy Closure

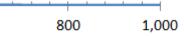
- Guidance: Natural Attenuation, Evaluating Source Flux
- **Objective**: Extent and Timing Needed for Source Remediation

- Quantitative
 - Conceptual Site Model
- Performance and Optimization Evaluations
- Predictive Modeling
- Data Analytics

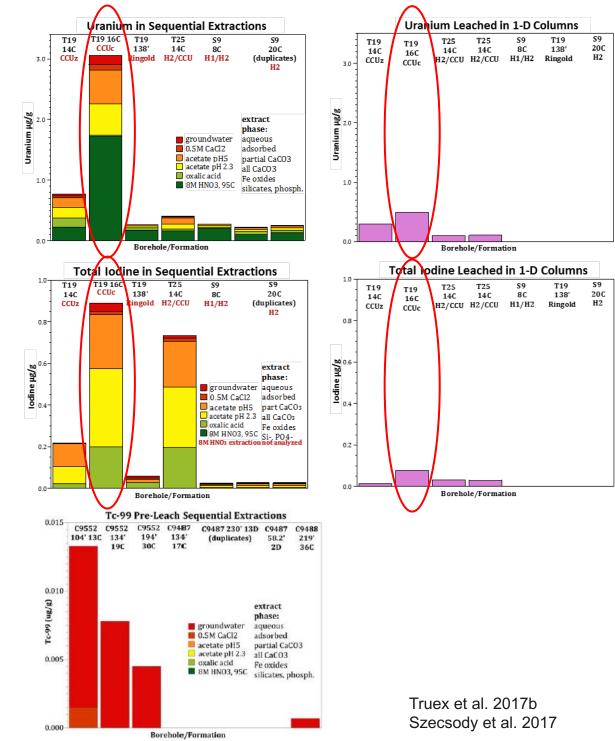

- Site Properties
- Hydrology
- Attenuation Processes
- Remediation Processes
- Modeling Parameters
- Monitoring Data



Interpretation


- Scoping
 - Based on the aqueous discharge volume and site characteristics, what is the estimated flux profile to groundwater?
- Addressing uncertainties
 - Attenuation processes
- Flux estimates for decisions and verification

Truex et al. 2015c Oostrom et al. 2016

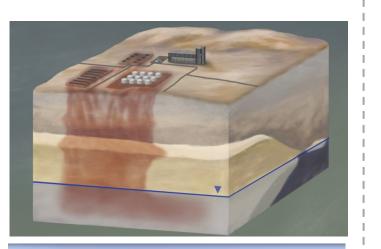


Attenuation Processes

- Use a graded approach
 - What portion of the contaminant inventory is mobile?
 - How mobile is the contaminant (transport parameters)?
 - What are the controlling processes (mechanisms)

OF COMPLEX SITE @ PNNI

 Integrate with predictive modeling to refine estimates and define verification approach

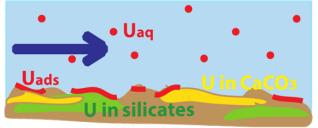


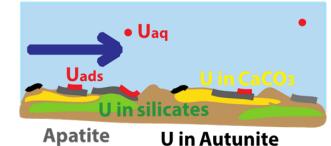
Remediation: How do we enhance design, implementation, monitoring, and optimization? **Effectiveness and Monitoring, Evaluation** and Optimization

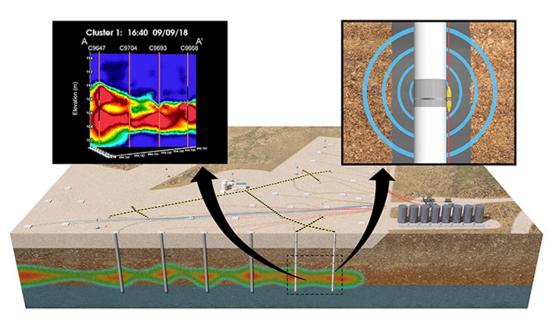
Controlling **Processes**

Pacific

Northwest

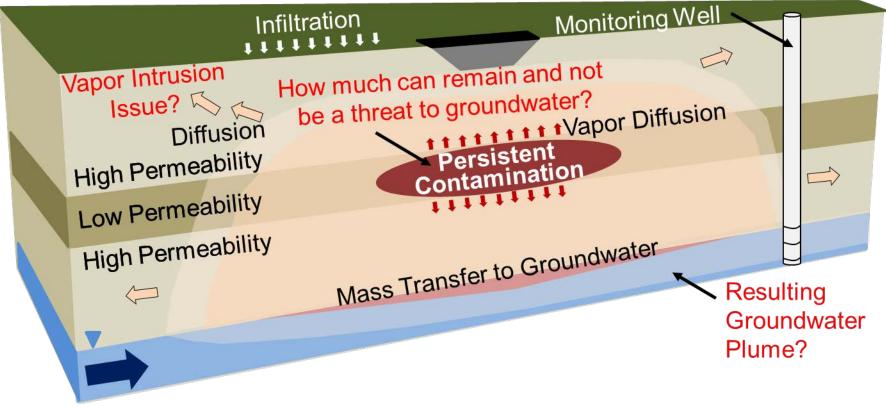


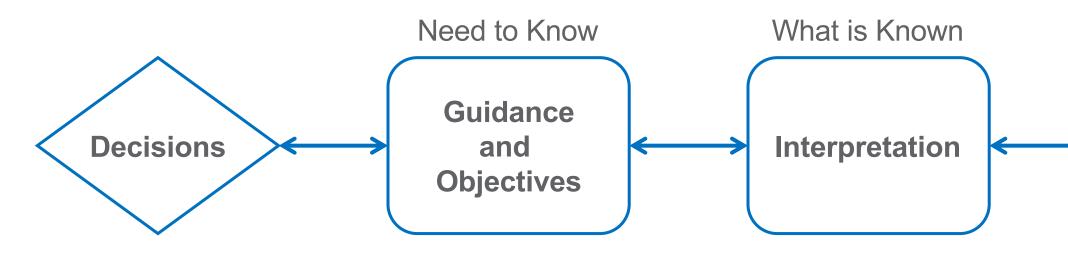



Implementability

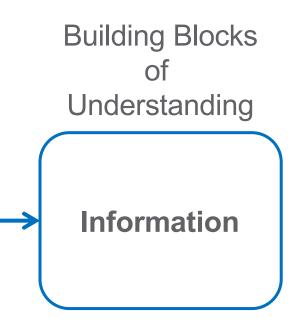
Untreated

PolyPO₄ Treated



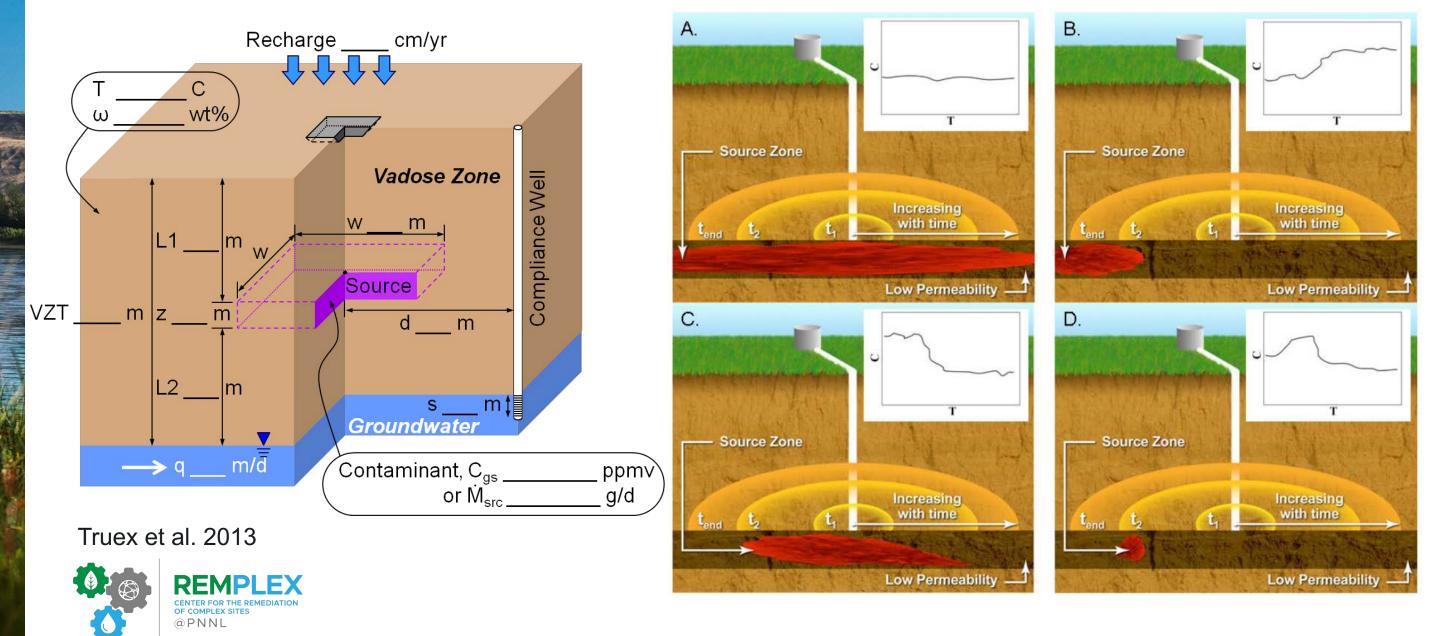

Soil Vapor Extraction (SVE) Endstate

- SVE is effective but will experience diminishing returns
- How do we evaluate when SVE should be terminated?



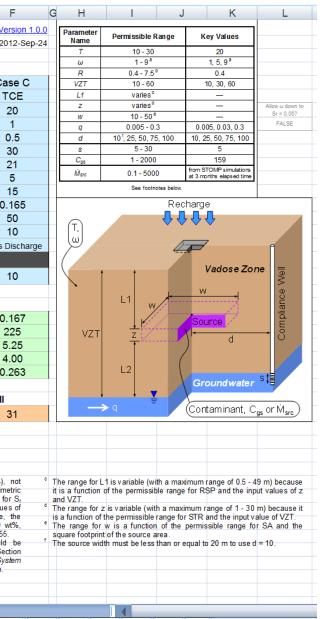
- Need for Mitigation
- Determine End State
- Select Remedy
- Manage/Optimize Remedy
- Remedy Closure

- Guidance: SVE Endstate Guidance
- **Objective**: Determine when remaining contamination does not pose a risk
- Quantitative
 Conceptual Site Model
- Performance and Optimization
 Evaluations
- Predictive Modeling
- Data Analytics



- Site Properties
- Hydrology
- Attenuation Processes
- Remediation Processes
- Modeling Parameters
- Monitoring Data

Modeling and Source Definition Approach



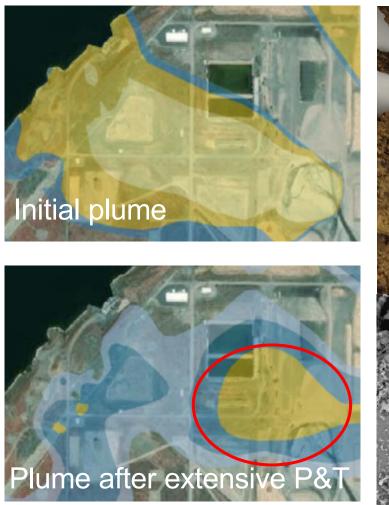
SVE Endstate Transport Analysis

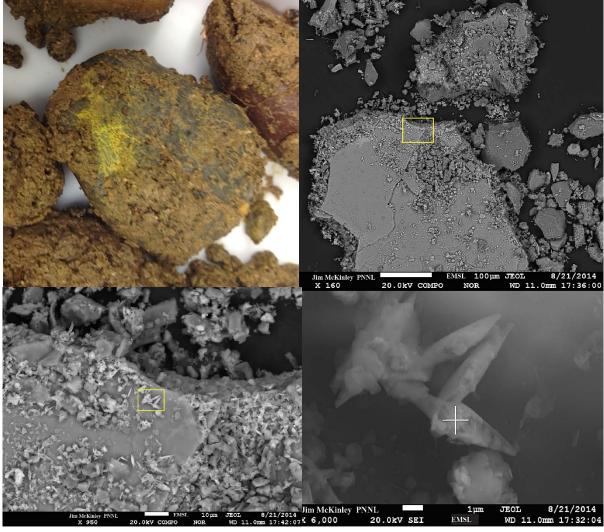
 Conduct estimates, evaluate uncertainty, and define verification approach

http://bioprocess.pnnl.gov/SVEET_Request.htm

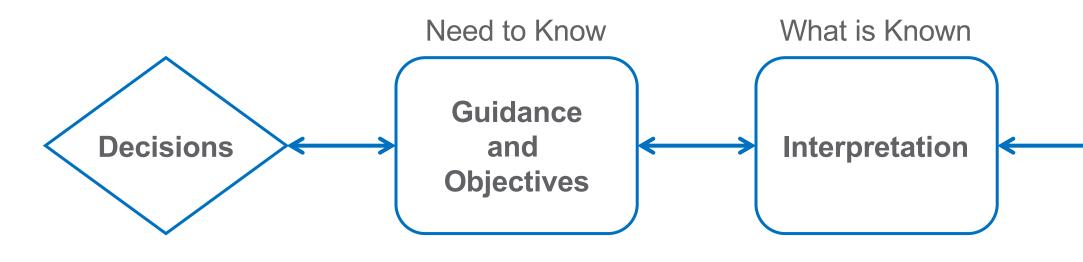
	А		В		С	D	E		
21	SVE E	indsta	te Tool (SVEET)			Ve	
22		bed in: Soil Vapor Extraction System Optimization, Transition, and Closure Guidance							
23									
24	User Inp	out							
25	•	Scenario Name			_	Case A	Case B	Ca	
26		Contaminant			_	СТ	TCE	٦	
27	т	Temperature			[°C]	19.6	20		
30	ω	Avg. Moisture Cont			[wt %]	8	1		
31	R		•	echarge:	[cm/yr]	0.5	0.5		
32	VZT	Va	nickness:	[m]	60	30			
33	L1	D	f Source:	[m]	40	21			
34	z		Source Th	nickness:	[m]	10	5		
35	w (= I)	So	urce Width (=	Length):	[m]	50	15		
36	q	GW Darcy Velo			[m/day]	0.3	0.165	0	
37	d	Distance to Compliance We			[m]	25	50		
38	s	Compl. Well Screen Length:			[m]	5	10		
39			e Strength Inp	-		Gas Concentration	Gas Concentration	Mass	
40	C _{gs}	Sour	ce Gas Conce	entration:	[ppmv]	159	50		
41	M _{src}	Se	ource Mass Di	ischarge:	[g/day]				
42	IVISIC	00		ischarge.	[g/day]				
42	Coloulat	od Innut	•						
43	Calculat STR			o Dotio*:		0.167	0.167	0	
40	SA	Source Thickness Ratio*:			[] [m²]	2500	225	0	
40 50	RSP	Areal Footprint of Source*: Relative Source Position*:				4.00	5.25	5	
52	L2				[]	10.00	4.00	4	
52	H	Distance – Source to GW: Henry's Law Constant**:			[m] []	0.890	0.263	0	
61	п		enry's Law Co	instant .	[]	0.890	0.203	0	
62	Pocult	Estimate	d Croundwate	or Contom	inent Cor	contration at Col	ected Complianc	o Woll	
								e wen	
65	Cw	Fina	I Groundwate	r Concin:	[µg/L]	16	15		
66									
67		* See below for permissible ranges of intermediate calculated values. ** See the 'HLC' worksheet for details of the temperature-dependent calculation of H.							
68		See the	HLC worksneet	for details of	the temper	rature-dependent ca	liculation of H.		
69				1 ³ The					
70	Parameter	Permissible Range	Key Values				use residual saturati r, for user convenienc		
74	Name	0.1 - 0.5 0.1, 0.25, 0.5 moistu			ure content		parameter. The key		
71	STR					nd 0 EE which corros			
72	STR SA	100 - 2500	100, 400, 900, 2500	were 0.807	0.05,0.3,a 8,4.843,a	nd 0.55, which corres and 8.879, respective	ely. Again for conv	enience,	
72 73	STR			were 0.807 moist	0.05, 0.3, a 8, 4.843, a ure content	and 8.879, respective range is truncated a	ely. Again for conv t 1 wt% and extende	enience, ed to 9	
72 73 74	STR SA RSP	100 - 2500 0.1 - 10 0.5 - 49 contaminant-	100, 400, 900, 2500	were 0.807 moist althou The	0.05, 0.3, a 8, 4.843, a ure content ugh values a applicability	and 8.879, respective range is truncated a torabove 8.879 wt% of the estimation	ely. Again for conv t 1 wt% and extende are treated as S ₇ value approach used here	enience, ed to 9 es of 0.55 es should	
72 73 74 75	STR SA RSP L2	100 - 2500 0.1 - 10 0.5 - 49	100, 400, 900, 2500 0.1, 1, 10 —	were 0.807 moist althou The confir	0.05, 0.3, a 8, 4.843, a ure content igh values a applicability med for site	and 8.879, respective range is truncated a t or a bove 8.879 wt% of the estimation s with recharge betwee	ely. Again for conv t 1 wt% and extende are treated as S ₇ value approach used here en 2.5 and 7.5 cm/yr.	enience, ed to 9 es of 0.55 e should See Se	
72 73 74 75 76	STR SA RSP L2	100 - 2500 0.1 - 10 0.5 - 49 contaminant-	100, 400, 900, 2500 0.1, 1, 10 —	were 0.807 moist althou The confir 4.2.2.	0.05, 0.3, a 8, 4.843, a ure content ugh values a applicability med for site 1 of the	and 8.879, respective range is truncated a t or a bove 8.879 wt% of the estimation s with recharge betwee PNNL report entitled	ely. Again for conv t 1 wt% and extende are treated as S ₇ value approach used here	enience, ed to 9 es of 0.55 should See Se ction Sy	
72 73 74 75 76 77	STR SA RSP L2	100 - 2500 0.1 - 10 0.5 - 49 contaminant-	100, 400, 900, 2500 0.1, 1, 10 —	were 0.807 moist althou The confir 4.2.2.	0.05, 0.3, a 8, 4.843, a ure content ugh values a applicability med for site 1 of the	and 8.879, respective range is truncated a t or a bove 8.879 wt% of the estimation s with recharge betwee PNNL report entitled	ely. Again for conv t 1 wt% and extended are treated as S _r value approach used here en 2.5 and 7.5 cm/yr. Soil Vapor Extrac	enience, ed to 9 v es of 0.55 e should See Se ction Sys	
72 73 74 75 76	STR SA RSP L2	100 - 2500 0.1 - 10 0.5 - 49 contaminant-	100, 400, 900, 2500 0.1, 1, 10 —	were 0.807 moist althou The confir 4.2.2.	0.05, 0.3, a 8, 4.843, a ure content ugh values a applicability med for site 1 of the	and 8.879, respective range is truncated a t or a bove 8.879 wt% of the estimation s with recharge betwee PNNL report entitled	ely. Again for conv t 1 wt% and extended are treated as S _r value approach used here en 2.5 and 7.5 cm/yr. Soil Vapor Extrac	enience, ed to 9 v es of 0.55 e should See Se ction Sys	

P&T Performance Assessment and Exit Strategy

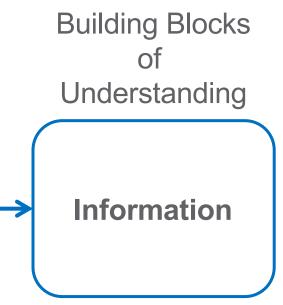

- Chromate is mobile and should be amenable to P&T
- Persistent areas of plumes: identify cause and address as part of exit strategy
- Sediment and leaching analysis identify source characteristics and soil flushing options



Chromate plume


Chromate precipitate in source area

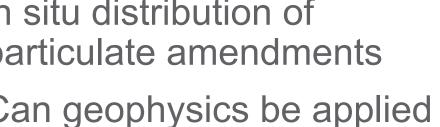
Truex et al. 2015c



- Need for Mitigation
- Determine End State
- Select Remedy
- Manage/Optimize Remedy
- Remedy Closure

- Guidance: P&T Exit Strategy, Evaluating Source Flux
- **Objective**: Quantify Secondary Source Strength

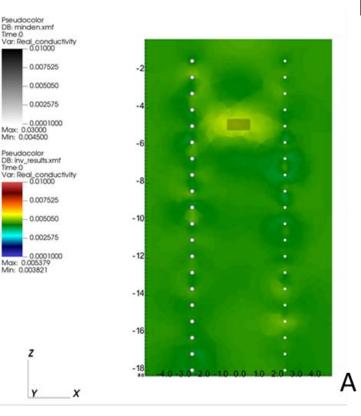
- Quantitative
 - Conceptual Site Model
- Performance and Optimization Evaluations
- Predictive Modeling
- Data Analytics

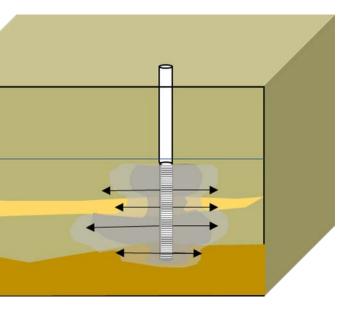


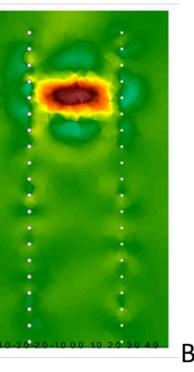
- Site Properties
- Hydrology
- Attenuation Processes
- Remediation Processes
- Modeling Parameters
- Monitoring Data

Design-Stage Decisions: Amendment Injection Monitoring

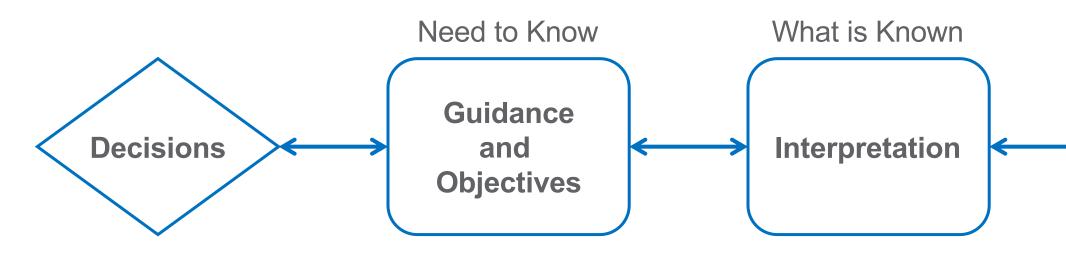
- Concern about evaluating in situ distribution of particulate amendments
- Can geophysics be applied to image the distribution?
- Data inversion techniques allow for upfront synthetic evaluation of geophysics resolution

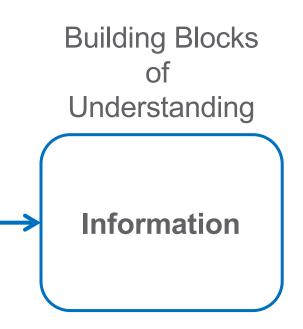



Pacific


Northwest

Particulate amendment





- Need for Mitigation
- Determine End State
- Select Remedy
- Manage/Optimize Remedy
- Remedy Closure

- **Guidance**: Geophysics Data Inversion Approaches (E4D)
- **Objective**: Measure in situ amendment distribution
- Quantitative Conceptual Site Model
- Performance and Optimization
- Evaluations
- Predictive Modeling
- Data Analytics

- Site Properties
- Hydrology
- Attenuation Processes
- Remediation Processes
- Modeling Parameters
- Monitoring Data

Implications and Applications

- Technical guidance and use of objectives- and interpretation-driven approaches facilitate remedy decisions
- Applying and developing technical guidance, fostering appropriate capabilities, and enabling collaborative efforts are key elements for REMPLEX
 - Develop and make available technical guidance documents as resources
 - Develop interpretation tools such as data analytics, modeling, and geophysical data inversion
 - Make available and apply laboratory and field investigation capabilities to obtain actionable information
 - Promote collaborative efforts to address environmental site issues, especially for complex sites

- Technical resources are needed to support defining the right level of detail for remedy decisions at complex sites
- An integrated approach tying information, interpretation, objectives, and guidance to decisions can facilitate efforts at complex sites
- Determining what we "need to know" can use an integrated approach and technical guidance that provide a framework for identifying information sufficient for decision making

Thank you

<u>remplex@pnnl.gov</u> <u>www.pnnl.gov/projects/remplex</u>

Center for the Remediation of Complex Sites

REMPI FX **OF COMPLEX SITES** @PNNL

Technical Leadership

Independent technical resource with proven track record of supporting deployment of advanced technologies and alternative strategies

Multi-institutional Collaborations Integration and leveraging across federal and private partnerships to facilitate

solution development

Solution Development

Leverage existing capabilities spanning all TRLs to provide solutions in adaptive remediation and long-term stewardship that enable risk-based remediation

www.pnnl.gov/projects/remplex

Northwest

Pacific

References

- Dresel, P.E., D.M. Wellman, K.J. Cantrell, and M.J. Truex. 2011. Review: Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides. Environ. Sci. Technol. 45(10):4207-4216.
- National Research Council (NRC). 2013. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites. National Academies Press, Washington, D.C.
- Oostrom, M., M.J. Truex, GV Last, CE Strickland, and GD Tartakovsky. 2016. Evaluation of Deep Vadose Zone Contaminant Flux into Groundwater: Approach and Case Study. Journal of Contaminant Hydrology. 189:27–43.
- Szecsody, JE, MJ Truex, BD Lee, CE Strickland, JJ Moran, et al. 2017. Geochemical, Microbial, and Physical Characterization of 200-DV-1 Operable Unit B-Complex Cores from Boreholes C9552, C9487, and C9488 on the Hanford Site Central Plateau. PNNL-26266, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, CD Johnson, DJ Becker, K Lynch, T Macbeth, and MH Lee. 2017a. Performance Assessment of Pump-and-Treat Systems. Ground Water Monitoring and Remediation. doi: 10.1111/gwmr.12218
- Truex, MJ, JE Szecsody, NP Qafoku, CE Strickland, JJ Moran, BD Lee, et al. 2017b. Contaminant Attenuation and Transport Characterization of 200-DV-1 Operable Unit Sediment Samples. PNNL-26208, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, CD Johnson DJ Becker, MH Lee, and MJ Nimmons. 2015a. Performance Assessment for Pump-and-Treat Closure or Transition. PNNL-24696, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, M Oostrom, and GD Tartakovsky. 2015b. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites. PNNL-24731, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, JE Szecsody, NP Qafoku, R Sahajpal, L Zhong, AR Lawter, and BD Lee. 2015c. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area. PNNL-24705, Pacific Northwest National Laboratory, Richland, Washington.
- Truex, M.J., D.J. Becker, M.A. Simon, M. Oostrom, A.K. Rice, and C.D. Johnson. 2013. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance. PNNL-21843, Pacific Northwest National Laboratory, Richland, WA.
- Truex, M.J. and K.C. Carroll. 2013. Remedy Evaluation Framework for Inorganic, Non-Volatile Contaminants in the Deep Vadose Zone. PNNL-21815, Pacific Northwest National Laboratory, Richland, WA.

