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Presentation Outline

What are Remediation Geology/Environmental
Sequence Stratigraphy? (Rick)

Why are they critical to groundwater remediation
projects? (Rick)

How are these technologies applied to environmental
restoration projects? — Case Studies (Mike)
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Emergence of Petroleum Geology in the Oil Industry

« Early days of exploration and production, once * As production declined, geology became

oil reservoir was discovered, production was increasingly critical for economical operations
limited by facilities capacity (engineering * Billions of dollars have been invested in
focus) research and development of stratigraphic

controls on fluid flow
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The Environmental Sequence Stratigraphy (ESS) Process
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0 Research regional geology to Leverage existing lithology data: 9 Map and predict
determine depositional environment, vertical grain size patterns indicative of the subsurface permeability
the foundation of the ESS evaluation. genetic relationships. architecture away from the data points.
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ESS: US EPA Best Practice — 2017

EPA/600/R-17/293
September 2017
L e Groundwater |
N Environmental Protactio
SEPAG: rovnawaier issué
. Best Practices for Environmental Site Management:
» Step-by-step guidance document for CSM A Praciical Guide for Apphing Environmental Sequence
Stratigraphy to Improve Conceptual Site Models
Michael R. Shuliz', Richard S. Cramer', Colin Plank’, Herb Levine?, Kenneth D. Ehman?®
L ] L | L ] L ]
o
BACKGROUND
CONTENTS .
This issue paper was prepared at the request of the
Backg d 1 Environmental Protection Agency (EPA) Ground Water Forum.
The Ground Water, Federal Facilities, and Engineering Forums
* 90% of mass flux moves through only 10% e e T
O o N - - Environmental Protection Agency (USEPA) in the ten Regional
TR S“;'Igmphn'; LT 4 Offices. The Forums are committed to the identification
] ] _°w = ) and resolution of scientific, technical, and engineering
f I f r m r I I n r I I I Sequence Stratigraphy and Environmental - issues impacting the remediation of Superfund and RCRA
- S S sites. The Forums are supported by and advise Office of
Il. Depositional Environments and Solid Waste and Emergency Response’s (OSWER) Technical
Facles Models. 7 Support Project, which has established Technical Support
» n Facies models for fluvial systems 10 Ce;t;fs ir: la borattc;g:soopem) Ofﬁtedol;vRt:; a:fﬁc: of Researchd
L] Glacial = jtional systems 10 and Development , Office iation Programs, an:
 Link to Groundwater Technical Issue Paper: e e e e SN
L. :z:lk;ﬂ::yot‘omm:mﬁqu. with the Forums providing state-of-the-science technical
. H H — S More Accura assistance to USEPA project managers. A compilation of issue
httDS//neDISGDaQOV/EXG/ZVPDFCgI/P1OOTN2CPDF7DOCkeV—P1OOTN2CPDF Represent the Subsurface __ 12 papers on other topics may be found here:
Phase 1: Synthesize the geologic and
depositional setting based on regional geologic http://www.epa.gov/superfund/remedytech/tsp/issue.htm
work 12
Phase 2: Formatting lithologic data and The purpose of this issue paper is to provide a practical guide
id ‘l,: g grain size trends 16 on the application of the geologic principles of sequence
. - stratigraphy and facies models (see "Definitions” text box,
e e e page 2) to the characterization of stratigraphic heterogeneity
Concluslons 22 at hazardous waste sites.
— 24 Application of the principles and methods presented in this
Appendlx A: Case Studles Al issue paper will improve Conceptual Site Models (CSM)
and provide a basis for understanding stratigraphic flux and
Appendix B: Glossaryofterms __________B1 assodated contaminant transport. This is fundamental to
designing monitoring programs as well as selecting and
This decument was prepared undes the U S. Environmenial Brotecson Agency implementing remedies at contaminated groundwater sites.
Nabioral Dfmhmiwsﬂz Team Decontaminafion Anslyical And Technical Service EPA recommends re-evaluating the CSM while completing the
D e e Sty e e (€550 site characterization and whenever new data are collected.
. ' ’ ) Updating the CSM can be a critical component of a 5 year
s & McDonnel X o
US.EPA review or a remedy optimization effort.
iChewron Energy Technology Compeny

\
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https://nepis.epa.gov/Exe/ZyPDF.cgi/P100TN2C.PDF?Dockey=P100TN2C.PDF

Components of a Conceptual Site Model (CSM) for

a Groundwater Contaminated Site

Technical Disciplines Required

Contaminant hydrogeologists,
environmental engineers,
Contaminant numerical modelers

Fate & Transport

r==—==71

variable over time

<— Static —» -

Groundwater Flow

hydrogeologists,
environmental engineers,
numerical modelers

Geologists, including
stratigraphers, structural
geologists, volcanologists (as

needed); hydrogeologists

S
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Geology/Heterogeneity Matters

» More than 126,000 sites across the U.S. require = e
12t ALTERNATIVES FOR MANAGING
remed |at|0n THE NATION’S COMPLEX
* More than 12,000 of these sites are considered Sl LAV e L B PR

"complex”

 “...due to inherent geologic complexities,

restoration within the next 50-100 years is likely
not achievable.”

Alternatives for Managing the Nation's
Complex Contaminated Groundwater Sites
National Academy of Sciences Committee on
Future Options for Management in the Nation's
Subsurface Remediation Effort, 2013
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Expertise of the Practitioner

Geology

. |

S\
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Expertise of the Practitioner...Pattern Recognition

Geology

. |
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Radiologist = Stratigrapher

Geology

. |
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AFCEC Critical Process Analysis (CPA) Project Review

Primary Finding was Improved CSM = Remediation Optimization

0
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: 82 sites
s I
. |
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9%

392 recommendations

pP@®
R/ Remedy Evaluations: 2014 — 2020
"'l;("“‘
3 Sites Evaluated Site-Specific Results Percent
{ ,.n-:-u' P 3::?n' o { ‘y' of Sites
e e s TR Fill data gaps, refine CSM 96
s Lt PSRy St e "f"“':;ﬁ_‘::'.‘ Optimize remedial system or approach 62
; e TS e Update objective and exit strategy 50
Voot [ep— Jucomane = P \2 )
T peat L PO 2 Implement contingency (Plan B) 23
* M o Gl e e
RS an e TR :........' 7 g Remedy effective and optimal 10
(angto 20w N Considered
B o o 2 wowe . Una:\fare 5%
y xous Ly Recommendation g %" \
Y19. / ~
) 5 TraCR'ng R(qectggo <1%
15 Indirectly h
Satisfied




Air Force ESS Projects

AFCEC conducted an
enterprise-wide study

Over 80 base-wide ESS
projects

AFCEC standard approach
for PFAS Rls

Lead remediation engineer
concluded, an
oversimplified CSM
results in an over-
engineered, high cost
remedy
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LMTE DNVIRCAMENT  SUEITONE Ep-p—p——

it ke B Kirtland Air Force Base

bulk fuels facility field trip

Posted 42172015 Updaded 421/2015 Email story Print story
Like ) O st BOva
by Jim Fesher

Cross-Section Location Map Cross-Section T1

Kirtland Public Aftars

4/212015 - KIRTLAND AIR FORCE BASE, NM. -- Concermed otizens
local residents, gaology buffs and students from the University of Néew
Maxnco and New Mexico Insteute of Mrsng and Technology joined local
2gences engoged n cleaning up the Kirtland Bulk Fuels Faclity keak Apnl
18 10 leam more about the science betind the assessment and deanup
The group visted environmental cleanup sites around Albuquerque and
qeob.mdh ibu,!u'ne Shes near and on Kirtland

- b
i ;

| r A

g M

DEPARTMENT OF THE AIR FORCE
WASHINGTON OC

7

OFFICE OF THE ASSISTANT SECRETARY

= = -

Graphic Grain
Size Scale

SAF/IE

1165 Air Force Pentagon

Washingion, DC 20330-1665

Mr. Colin Plank
5555 Glenwood Hills Parkway SE, Suite 300
Grand Rapsds, Michigan 49512

1 offer my sincere and p | appe ioa for your ibutions to the
Kirthand Alr Force Base Bulk Fuels Facility cleanup effort. Your selfless dedication,
m‘moﬂll dnhgmw und willingness to reach out and connect with the affected comevunity

pum e

The Kirthind AFB Interins Measure Milestone event is but one indicator of the great
progress you have belped achieve. It is also a preview of masy more fulure successes as we
waork 0 rebuild the tnast b the gracious citizens of Albuquerque and our United States Air
Foeee,

Keep up the outstanding work!
Simcerely,
L'__/——l
MIRANDA A. A. BALLENTINE

BURNS&SDONNELL Assistant Secretary of the Air Force

(Installations, Environment, and Energy)




Environmental Sequence Stratigraphy for RemPlex 2024

» What is Stratigraphic Heterogeneity
and Why Does it Matter?

» Sequence Stratigraphy and Facies
Models as a predictive framework for
subsurface interpretation

» Case Studies of Application of ESS
« Silicon Valley: Geologic Mapping and
Forensic Source Partitioning

* Eglin Air Force Base: Sequence
Stratigraphy for Pump and Treat
Optimization

\
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The Problem of Aquer Heterogenelty

w= e gy g W w AR X ;
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» Outcrop analog of meandering fluvial deposits (white is sand, brown is clay)
(Upper Cretaceous Horseshoe Canyon Formation, Alberta, Canada)

» At aquifer remediation site scale

» Ability to map sand channels in three dimensions
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The Problem of Aquifer Heterogeneity
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The Problem of Aquifer Heterogeneity

>

o o
- '\ 4 dl

““gg‘ "a‘l EURT) l“““

20 oaws Tas QQ'» ,..\~
FIEL Y

A | % ?.4 m \%x

.“’\ L
5"

\
BURNSN’ISDONNELL



The Problem of Aquifer Heterogeneity
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The Problem of Aquifer Heterogeneity
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HPT-1 HPT-2

I
EC (mim) e msim)
MW -1 9 50 100 150 200 MW -2 0 50 100150 200 DW-1

Cross Sections

D —— EJY | | -

» Correlating “first encountered sand” is o\ | [--
common practice, but often is not the

case and can be problematic

» Important implications for groundwater = s
and contaminant flow paths €C (nsin €C (i

MW-1 (50100150 200 MW-2 o 50100150 200 DW -1
» Poses risks for accurate monitoring of
contaminant plumes, remediation

SUCCESS

N
1NN

Lithofacies
Sadeque, )., Samuels, R.C. (2024). The Application of Sequence Stratigraphy to the 2 Sand - - =+ Groundwater FlOWpath MW = Monitonng Well
Investigation and Remediation of LNAPL-Contaminated Sites. In: Garcia-Rincén, J., 3 .r M l’k DW = Drlnklng Water We"
Gatsios, E.,Lenhard, R.)., Atekwana, E.A., Naidu, R. (eds) Advances in the Characterisation 8 - S||t ime Marker EC HPT = Hydraullc Proﬁling TOO'
and Remediation of Sites Contaminated with Petroleum Hydrocarbons. Environmental E v : .
N Contamination Remediation and Management. Springer, Cham. & - Clay E Screen Interval Log EC = Electrical COﬂdUCtIV‘ty
BURNS \\hd(-: DON N - https://doi.org/10.1007/978-3-031-34447-3_ 4




Facies Models: Filling in the Blank Spaces

For one who has seen the Mona
Lisa many times, the smile is
sufficient information to complete
the picture

Same is true for those familiar with
depositional environments, with
the right clue the picture can be
filled in (correlation between wells)

N\ :
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Introduction: ESS is About Pattern Recognition

Alluvial Fan
e

@
—~ ®
2

®

=

e
~%
©

Meandering

Fluvial Beach/barner island

WM

- N 2

Braided ~—

Fluvial _};
o O

offshore 2, circulation

S

/} Dunes
Depositional

Shore, environments have
deltaic

distinctive vertical grain
size distributions

\“\_V\’w[
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Depositional Environments
and Log Signatures

a) Coastal Environment

Glacial

GROTEC e CPT

4

GRorEC @ CPT

GROMEC  df— CPT GR or SP CPT

g RN

Barrier Bars/ Delta Mouth Bar Tidal Channel Bar Tidal Mouth Bar
Beach Ridges & Prodelta
b) Fluvial Environment
GROrEC (G CPT GROrEC (Gumm CPT || GROTEC G CPT
am
=TT
[E E ==
5
- —

Point Bar & Braided Bar & Crevasse Splay, Levee &
Overbank Overbank Overbank
c) Alluvial Fan Environment
GROrEC @ CPT GRorEC s CPT || GROTEC @uume CPT  |[GROMEC (G CPT
= i
Ty
m sy m

Fan Delta Mouth
Bar & Prodelta

\
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Proximal Alluvial
Fan (debris flow)

Middle Fan

Distal Fan (point

(braided bar/sheet bar & overbank)

s damanibe)

Figure not to scale
u) Ulacial cnvironment

GRor EC €= CpT GR or EC €= CPT GRor EC € CPT

)

Till (sandy diamicton) Till (clayey diamicton) Glacial Outwash

Sedimentary Structures Lithology & Permeability | GR: Gamma Log |
High - rl
Massive Conglomeratic ?;'g 18:. goarse sand i (E:'gg:)u(c::tvily
rave
fe] Ripple cross-tamination [T Lithic fragments | | 8 o g CTP: Cone
AR s B Ine to coarse Penetrometer
[E] Planar lamination  [T5] Mudclasts 8| = SSsand Test
E] Cross-bed (gravelly) E Mud drapes & .gg},g’ fine € Direction of
grain size
L . " .
=1 G dad Low Bl ciay tosit increasing

Sadeque, )., Samuels, R.C. (2024). The Application of Sequence Stratigraphy to the
Investigation and Remediation of LNAPL-Contaminated Sites. In: Garcia-Rincén, J.,
Gatsios, E., Lenhard, R.)., Atekwana, E.A., Naidu, R. (eds) Advances in the Characterisation
and Remediation of Sites Contaminated with Petroleum Hydrocarbons. Environmental
Contamination Remediation and Management. Springer, Cham.
https://doi.org/10.1007/978-3-031-34447-3_ 4
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Cantenments
o

FHolley,

: R %‘A’T"
Tiger Point Navarre f

e

—— : > R > 59 Eghn‘AFB
e —— - x4_ Shahmar? -

n"éiRssalsland ‘NFort.Walton Beach

Barrier Island Depositional
Environment Example: the concept of
'Facies Models"

Data SIO. NOAA! UIS! Navy. NGA GEBCO
Image Landsats Copernicus

9.72 mi Data USGS GOOQ

Imagery Date: 12/13/2015 30°24'39.32" N 86°54'06.35" W elev 102 ft eve al




F ac i es M (o) d e I S PROGRADING BARRIER SHORE NESTED OFFSET STACKED ‘WINGED' EBB CHANNELS,

TIDAL DELTA LOBES, &

~=— Coastal Plain ——#= <&~ Shoreface —#- <— Shelf - DISCONTINUOUS BEACH SAND SHEETS

_ : COASTAL PLAIN e e il R

* Detailed model for a Barrier SWAMP — - ,_ e : : - : =
SANDSTONE & . 3 \ E

Shore MUDSTONE
* “Distillation” of understanding of
elements, processes, and
preservation of strata, based on
data acquired from:
*  Modern systems
* Imagery and surficial
features
* Drilling and coring
* Remote sensing

(geophysics)
* Historical observations e WUDSTONSS
] AMALGAMATED
* Theoretical and computer ESTUARINE e
CHANNEL FILL e :
models WA A
* Ancient systems — ::; A S
* Outcrops _ SHINGLED STACKING \
* Subsurface examples (oil COASTAL PLAIN =
. BREACHED BEACH 3.2/.4
and gas fields) RIDGE WASHOVER =
. . - SPLAY SANDSTONE T~
* Provides a predictive framework & MUDSTONE =,
i FORESHORE ij
for subsurface architecture =] BURROWS - & UPPER -
COAL [ SO VORER e SHOREFACE LOWER SHOREFACE & ==
3331 ROOTS o SANDSTONES DELTA-FRONT SANDSTONES ~ f¥+
KEY [ panarsens ] Hummocky eeps
\g 777 TROUGH =] CURRENT RIPPLE BEDS
RUNILS Nt DONNGEL i CROSS BEDS WAVE RIPPLE BEDS Christopher G. St. C. Kendall 2007




Case Study #1 - Silicon Valley : Applying
Facies Models for Contaminant Pathway

Validation

» Silicon Valley, San Francisco Bay Area

» Former semiconductor and other electronics
manufacturing, multiple source areas (complex
commingled plume, TCE plus)

i
2 Figure A1. Map showing location of the Santa Clara Valley

@ 2 N « 9 \ in the southern San Francisco Bay region, California. Alluvial
s A } « ¥\ lowlands [yellow) are distinguished from bedrock uplands
o P Soa Pab X o [ \.| X (green). Principal faults are shown in black. Red box
Faipeiy ‘ . \* \ | ® indicates general location of case study site. (Modified

| from Wentworth et al., 2014)

R e /

» Superfund EPA oversight

» Many remedial actions
including in-situ, removal ¥ |
actions i




Original Conceptual Site Model

NY

» EPA Five-Year Review flagged rising ,
concentrations of TCE in T-9B as issue
and suggested further source area
remediation was needed (USEPA 5YR)

» potentiometric surface map suggested
onsite source

» Source area within active office space
» Client turned to ESS to investigate

» Revised CSM confirmed off-site source
of contamination, well screened
through multiple channels

N
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Original Conceptual Site Model

» Layer-cake
stratigraphy

» Continuous
confining zones

» Depth-based
zonation (A, B1,
B2)

BURNS\\MSDONNELL

LEGEND

BUILDING

D EXISTING BUILDING
FINE-GRAINED SOILS
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Workflow: Creating Graphic Grain Size Logs

* Normalize different vintages ofdata - R
collection, sampling methods, geo-bias, etc. Ve N

Gravelly SAND (SW); brown; medium dense,
o | riokr= Aol Lty
* |dentify trends in grain size (indicator of E Zi“ﬁa’:. 3“’ ; L
depositional processes)

* Logs show clear fining-upward channel vy ST G ow oy S10% r

29 30% vnry fina .ol ine und bwcst K

ty .‘. AY (CL); brown mettled black; ﬂil"

.............................................

deposits s':g::j;;::; it |
« Frame expectations for channelized AR
groundwater flow

LL §T-12C (cont.)

Grain Size Log. 0, GRAPHIC LOG DESCRIPTION
| 1888 : Sandy GRAVEL (GP); blue-gray: dense 1o very =z
31:| 2B 50 e oo e d danse; 5-10% clay; 10-15% silt; 20-30% very
i i g i R ‘o'd fineto vory ocuso und hno suba.ngu.‘u lo
b) Fluvial Environment N vrerere:]  subrounded gravel o 172" diametor; bigh est K
o .- -
GROrEC @uum CPT || GROFEC ummm CPT || GROrEC = CPT Ry s [
Sandy GRAVEL (GP); mutlicolored; very
T FneSindwiiees s = donse: <5% fines; 10-20% medium 10 very
— Z coarse sand; 40-50% fine subangular to
N Fine Sand subrounded gravel; 30- 40% mats.
E 1 wbmundodto rounded ¢ o 1 diameter;
- —— Viedom Sand S ery high est K
i i ) 5-1 O%Ynoa 30-40% maodium 1o very coarse
Wedion Sand 60 Tooaa] | sand; 40-50% fine subangular gravel; no
N ) | cOarse gravol bolow 54 3/4°
1 \Claywy SILT (ML); veory light gr'ty sx?l"l: very
POlnt Bar & Bralded Bar & Cfevasse splay. Levee & Ty | st 20-30% clay; 5-10% very fine 1o fice
Overbank Overbank Overbank
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Cross-Section C-C' C

ESS Cross ™

3

-

$100B1
S005B1
BH6

T-17B
T-12C
T-19B

T-8B

Section

8

Lol bbbl

» Detailed mapping of hydrostratigraphic units
in three dimensions with maps and cross
sections

» Constrained by existing well data,
interpreted in context of depositional
environment, facies models

11 ||||‘||||‘||||!HH
N\
B - - - - - -

- High- parmaability tacies (channel axs o masgin / splayt
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ESS-Based CSM

Channel map of HSU-1 (on-site channel) and cross section B-B’.|  Channel map of HSU-2 (off-site channel) and cross section C-C’

» Result: detailed
understanding of source-
to monitoring well
hydraulic connection

» Confirmed by
contaminant fingerprinting

» Resolved need for
additional source area
remediation

. s .
e’ o
Cross Section B-B: Down-channel cross section of HSU-1 (on-site channel)

S &
> K. & ¢
»& W & o Y

c
S
®
E Cross Section C-C: Down-channel cross section of HSU-2 (off-site
z channel) j
o
§ 0

w s & ® > ®
3 BY8,3 s e 3

a - o> uw

e
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Case Study #2 - ESS for Pump and e o o Erovelie Formation.
Treat Remedy Optimization

Eglin Air Force Base, Florida, USA

by Mike Shultz, Colin Plank, Mark Stapleton, Leo Giannetta and Rick Cramer

Abstract
> PU m p a nd Treat PC E G rou ndwate r PI u me At Eglin Air Force Base (AFB) in the Forida Panhandle, a groundwater extraction and treatment system was installed to contain and

! g ! ¢ remediate a chlorinated solvent plume. After 2years of operation, the system was not removing the contaminant mass at the rate predicted

N Ot a Ch IeVI n g p e rfo rm a n Ce_ ba Sed re m e d latl o n ( P B R) or required to meet performance-based contract terms. As a result, a sequence-stratigraphic analysis was initiated to develop a strategy to
improve performance. Sequence Stratigraphy methods were employed to identify a marine flooding surface (mfs) formed during a relative sea

o bj eCtiveS level highstand. The analysis also found that the mfs was locally eroded away, indicating that incised valleys were eroded into the formation

during a relative lowstand of sea level. These valleys were backfilled with coarse-grained fluvial and estuarine strata. The analysis concluded that
the groundwater extraction system lacked an extraction well screened within the coarse-grained valley fill. An additional extraction well was

>
» ESS-Based CSM implementation: reconfigure o o oo . THS e S g ot cbacy Fpvrents ok 5 s e o it
extra Ctlo n Iocatl O n ’ n O Ch a n g e I n Ca paCIty is occurring within the Surficial Aquifer System of the Gulf Coast (Citronelle Formation) as well as sites in similar geologic settings worldwide.
» Dramatic improvement in mass removal, plume — — =

collapse

_ Eglin Air Force Base

“h_:_/ ‘.::7;/
L Talsussoe
y Jacksoruibe
$T-69 PCE Mass Estimate Using kaconcentration Contour Method Mass Removal By Well Between
Deke Field, Eglin AFB, Florida June 2015 and December 2020
051 “E55Optimaaton | »
b Recommendations Implemented | STO6S-PW-01 I i
2 -3 G Tarpe
? e ey % :
e 3 STO63EW0I W
s | o» O STOGS-EW-03D | \ o o e
w 187 B
V) 2 STOGS-EW-21 W wam
i 133 X
STOES-EW-011 N
i 2
STO6S-EWC-01D I q.u..
VIO ONUN DN NN DU G0N LN WD IU0N G4 v 0.0 20 40 6.0 8.0 0.0 lmﬂd N
Date Mass Removal (Ibs) T3 Duke Pese [ tgan Ar Paree Base A
PCE Mass Estimate Remaining (bs) U7 Ctwonie Ovtorep 0 100 00

Fizure 11, Site ST-49 PCE mass estimate wsing isoconcentration contour method between January 2016 to October 2028, Duke Figu re 12. .\Ol-l“alized mass relno‘al b‘ “e"‘ 2"15.2"20.

Field, Eglia AFB Plorida. Figure 1. Location of Eglin Air Force Base, site ST-69 groundwater plume site, and Citrondle Formation outcrop belt.

80 M. Shultzetol] Groundwater Monitoring & Remediation 43, no. 3/ Summer 2023 jpages 79-92

N
BURNS NSDONNELL




a. Falling Stage Systems Tract (FSST) b. Lowstand Systems Tract (LST)

» Dominated by regional High pa « Continued development of High Low
™ erosion, creating Sequence SB Sequence Boundary (SB) SB
' Boundary (SB) » Sediments move basinward
assic Sequence Strat! |&=E.o. =

u by subaerial and submarine moving (prograding) deltas LST ==
erosion repectively 2| gsst <= above the SB g
- Sediments move to basin S SB = S8
floor S8

B SB
» Sea-level fluctuations caused by growth

Position of Sea Level

Position of Sea Level

of continental glaciations (ice ages)

» Dramatic impact on shoreline dynamics,
sedimentation
» Incised valleys are ubiquitous in the oot gl i o RS P B rodoapmdbernisipd
geOIOg|C reco rd, h|gh_permeab|l|ty ﬂUV|a| d. Highstand Systems Tract (HST) t ; c. Transgressive Systems Tract (TST)

d epos itS « Following maximum High Low {~ Initiated by abrupt drowning Hgh Low
p drowning of coastline above A of coastline, marked by a A
the Maximum Flooding HST « Transgressive Surface (TS)

I b 1 i Surface (MFS) MFS « Sediments move landward
» Sea-level rise and the “maximum flooding OB D) e SN e -
» Large seaward stepping deposits

Surface”: the key tO remediation at Eglin (prograding) deltas P MES « Barrier ridges back-stepping |}

« Large fluvial systems deltas TS

Time
Time

Position of Sea Level

Position of Sea Level

Rate of accommodation increase < Rate of accommodation increase >

Sediment supply Sediment supply
[ Sand [ Gravel SB: Sequence Boundary

MFS: Maximum Flooding Surface
[ Shale [[77] Graded Beds TS: Transgressive Surface

Sadeque, )., Samuels, R.C. (2024). The Application of Sequence Stratigraphy to the
Investigation and Remediation of LNAPL-Contaminated Sites. In: Garcia—-Rincén, J.,
Gatsios,E., Lenhard, R.)., Atekwana, E.A., Naidu, R. (eds) Advances in the Characterisation

Figere 7. Biock diagram hastrating downcstting of stresss durtag 3 relalive lowstand of sea bevel. From Ambewe and etz 2011, and Remediation of Sites Contaminated with Petroleum Hydrocarbons. Environmental
ed with permdedon from the Rurvas of Foonemic Geology, Univerdty of Treas,

Contamination Remediation and Management. Springer, Cham.
https://doi.org/10.1007/978-3-031-34447-3_ 4
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ESS Cross
Section

» Citronelle
Formation
overlying Alum
Bluff regional
confining unit

» Conspicuous
gamma-ray spikes
most correlative a
50’ msl

» Revised
interpretation
identified incised
valleys within
Citronelle

\
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Figure 9. Site cross section illustrating the absence of the mfs where removed by the incised valley, and comparison with the CSM
used in the original groundwater extraction and treatment system design. Also shown is the location of the extraction well placed in
the incised valley fill downgradient from the source area. Note presence of gravel-bearing units in the heterolithic incised valley fill,

and gravelly lag at the base of the incised valley.
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ESS-Based CSM &

o
g S
» Mapping of MFS and Incised R
Valleys indicated a lack of 5
extraction well in the IVF =

» Addition of EW-05D in permeable
IVF resulted in dramatic
performance improvement,
attainment of performance goals g

Treatment System
Locations e
”~

There is no such thing
as a “sandbox” when
it comes to
remediation!

What’s missing is
often as important as
what’s there in
stratigraphy!

N
BURNS NGDONNELL
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«= Discharge Lines Boring (subset shown)
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I e — |-

Figure 10. Site map illustrating cross section locations and areas of mfs preservation and incised valleys.



Remediation Performance Model

) \ : ST-69 Predicted vs. Actual PCE Mass Removal
» Prior to ESS, predicted Site Duke Field, Eglin AFB, Florida

Closure (SC) date was 2032

» Post-ESS implementation
Site Closure was 2022 plus
Post Active Remedial
Monitoring

PCE MASS (LBS)

» Implementation of ESS
reduced the time to
achieve Site Closure by 10
years

» 87% PCE Mass Reduction in
3 years

DATE

ss Remaining (lbs —e— PCE PME Actual Total Mass Remaining (lbs)

\
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Take-Aways

1. Can’t overemphasize the importance of the practitioner
(stratigrapher).

2. ESS is applicable to contaminants.

3. DOE can reduce the risk of uncertainty at radioactive waste
sites and increase environmental and worker safety by

* limiting exposure,
* reducing inefficient engineering design, and
» speeding up the remediation process through this targeted approach.

N\ :
BURNSNSDONNELL
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Pacific

Northwest  Hanford Site Introduction

* Plutonium was produced as part of the
Manhattan project during WWII

« Continued through the Cold War until 1989

* The site’s mission since the early 1990s is
focused on cleanup
= Tank waste

= Environmental remediation of contaminated waste

sites; protection and treatment of groundwater and
downstream surface water receptors

https://www.pnnl.gov/main/pubIications/external/fechnic

) al_reports/PNNL-32055.pdf
REMPLEX

)F COMPLEX SITES
O @PNNL
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Pacific

Northwest  Quitline

» Background
= Hanford geoframework model (GFM)

» Geophysical methods theory, data collection, information extracted
= Seismic, electrical resistivity tomography (ERT)

* Field examples within the high-hydraulic conductivity zone (HCZ)
= Southeast of 200 East Area

= Between the 200 Areas
= South of 200 East Area

 ERT visualization within SOCRATES
e Conclusions
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Northwest  Hanford Site Stratigraphy
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Nothwest Hanford Site Stratigraphy

NATIONAL LABORATORY

200 PO-1 G6round- Generalized Hanford Site Stratigraphy
water OU Hydm’ HY‘*‘O‘ Lithostrati E h (]
stratigraphic Units stratigraphy et o poch | Age
oo Eolium, alluvium,
3 .'ﬂ) ond colluvium R it

Sy
===l Sand.dominated

 Site stratigraphy is an interpretation
of borehole data and observations N et

» Core samples, borehole
sampling/logs, hydraulic testing

* Represented as hydrostratigraphic
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Pacific

Northwest  Hanford Geologic Framework Model (GFM)

« Geoframework model (GFM)

« Defines the spatial arrangement
of major hydrostratigraphic units
(HSUs)

* Forms the fundamental basis for
decisions (siting wells,
contaminant transport,
distribution of contaminants)

* We need to interpolate between “ ool

well locations «
 New wells are costly

« How can we ‘see’ in between wells?

“0(‘\\'\"\9
Cold Creek Unit

Taylor Flats Unit
Unit E

Lower Mud Unit
Unit A

| Ringold
| ﬁ

Basalt
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Northwest  Geophysical Methods

Seismic Reflection, Refraction Electrical Resistivity Tomography (ERT)
Some typical Power Supply/
site conditions dipole/ ERT Instrument

High Velocity Sediment

(e.g., overconsolidated crust)
) Computer

Seismograph ERTT:

Low Velocity Sediment
(e.g., muds, loose sands)

Array of Horizontal
«— Geophones —

High Velocity Sediment
(e.g., glacial till, —>
compact gravels)
Moderate to High
: Velocity Bedrock ’ Vs~70-250m/s
I M M/
s
= £ N
Ray paths N
yp / Vs~500m/s*
Refraction A
: i | ) | ! | i | j N . . s | | | | i | - | | - | - i | -
------- Reflection Vs~2000m/sT T !
| ) | | | ) | | | | ) | | ] | 1 L | ) |

| | | | | | | | | | | | | | | | | | | | | | |

Hunter et al. (2015, 2022)

ERT is sensitive to porosity, pore fluid conductivity,
moisture content, temperature, and lithology

Seismic wave speeds vary depending on the density

and the elastic properties of the material

Vs = shear wave velocity AV = change in potential | = current

Using these geophysical methods together provides multiple lines of evidence of stratigraphic structure



https://link.springer.com/article/10.1007/s10950-021-10042-z
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Northwest ERT Data Collection
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Variety of measurements collected l
C

(1) (1) Electrode
S N
l l_‘_l l l l .'\l\ ' f
a a a na a na "o 'I

Cy Py P> G G P, P G, B R o ,’/,; A
‘\\\ ~+ - // /
\\ S Sl + -7 /,
\ /
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------- » . .
. m - l ;5 | - ‘ . | negative potential P-
G P, P, G C, G P, P, positive current C+

negative current C-

« Large and small electrode spacings provide higher resolution of deep and shallow features
« Different electrode configurations can also improve resolution
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Nothwest Hanford Site, WA
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100-D ‘ . G
Geophysical investigations VA
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to investigate stratigraphic .
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synthetic simulations and x NG
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Pacific  Plume Maps and HCZ at Hanford
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Northwest 1] Southeast of 200 East — Area 1
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Pacific

Northwest  [2] Between 200 Areas

139000

Co-located
/ERT/seismic

138000

Northing (m)

137000

136000

569000 570000 571000 572000 573000

Easting (m)

Parallel ERT profiles were collected

Subsequent profiles were located after reviewing results of previous profile
Located where there is a suspected high transmissive area (e.g., paleochannel)
ERT provides 15t line of evidence of stratigraphic structure - Few wells to verify

REMPLEX
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Northwest  [2] Seismic Reflection and Refraction Tomography

Co-located
/ERT/seismic
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« Compressional wave (Vp) contrasts (colored image) match reflection locations well
REMPLEX « Shallower resolution (shorter offsets) of features compared to ERT

CENTER FOR THE REMEDIATION

O |  Channel like feature on NE side of line
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Northwest  [3] South and within 200 East Area
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Pacific

Northwest  [3] South and within 200 East Area

Seis-NS-1 —
ERT-EW-1
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Co-located ERT along Seis-NS-1

Elevation (m)

%10°
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« Coarse-grained, unconsolidated materials commonly exhibit lower

Vp compared to more cemented and finer-grained material

« Seismic reflections can occur at stratigraphic contacts or incised

channels
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Northwest  [3] South and within 200 East Area
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Co-located ERT along Seis-NS-1
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—enemno. © OEISMIC reflections can occur at stratigraphic contacts or incised channels

OF COMPLEX SITES
@PNNL




138000

137000

135000

133000

132000

131000

573000

S

Pacific
Northwest

NATIONAL LABORATORY

Seis-NS-1 —
ERT-EW-1

Seis-EW-2

Z-SN-SIeS

Seis-EW-1

574000

575000

Z-SN-133

[3] South and within 200 East Area

T-SN-143

576000

ha ad Easting (m)

0.0004 0.0022

Co-located seismic along NS-2

0.001 0.00

71133000
p

<
1132000

A

|~
575500 L

760004

0.01

« Coarser grained materials can exhibit higher bulk electrical
conductivity (EC) but the site-specific relationship between
hydraulic and EC needs to be studied



S

Pacific

Northwest  [3] South and within 200 East Area
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Northwest  \/isualization of Geophysical Data in SOCRATES

* ORIGEN module allows 3D
. ) . RESET ORIENTATION
visualization of ERT

i ERT imageS in the ConteXt Of Discrete Depth Samples
the 3D geologic framework

Geologic Info
« Several ERT field campaigns have €RT Point Data
been prototyped pata visual
« ERT images as a point cloud ) St
* Bulk conductivity
 Relative conductivity changes I
over time 0063 0063

Bulk Conductivity (S/m)

 Can step through time for
g temporally varying ERT results

Visualization of ERT survey results as a point cloud in the ORIGEN 3D view.
6 —_
RE M»PLEX hitps://socrates.pnnl.gov/
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Pacific

Northwest  Summary

* Surface geophysical methods are helping to provide stratigraphic information
on the Hanford Site

* First line of evidence
= Supports decisions about locations and need for new subsurface characterization wells
* Provide better spatial understanding of lateral transitions

» Ground truthing through well observations can better guide interpretations
(seismic)

* We still have work to do to understand the relationship between geophysical
properties and hydraulic properties

* Visualization of geophysical data is ongoing in SOCRATES
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