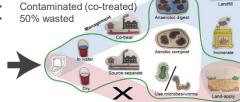
Sustainable Sanitation to Improve Soil Remediation Potential of Human Manure-Based Soil Amendments


Trisha Nickerson^{1a}, Matteo Campbell^{1b}, Anthony Straub^{1c}, Michael Toney^{1a,d}

University of Colorado Boulder

Goal 1: optimize sanitation

"Developed" sanitation:

- Energy intensive treatment
- 40-60% cost for sludge mgmt1

"Undeveloped" sanitation:

No treatment/management Pathogens to land/water

Goal:

- Safe treatment
- Minimize resource requirements
- No contamination
- 100% to soil

Fig. 1 Decision tree fo humanure handling

Goal 2: integrate sanitation and remediation

Ex: Kabwe, Zambia (pop. 300k)²

- Broken Hill Pb/Zn Mine 1906-94
- Waste heap (needs removed)
- Pollution spread
- Affected by drought

Add OM and nutrients

Increase water retention

Buffer pH

Unmanaged human waste compounds health risks

Potential of organic amendments:

Fig. 2 Pb-rich dust in Kabwe, Zambia²

Fig. 3 Lusaka (capitol 80 mi from Kabwe): 75% of human waste unsafely managed³

Sewered sanitation and wastewater treatment is not always feasible and may not

optimize end-product quality

Fig. 4 Terra Preta soil cultivated by indigenous tribes in the Amazon (biochar, excreta, compost)4

Research questions

Sequester carbon 1. How does management and treatment of humanure affect the physico-chemical properties of the produced amendment?

Support vegetation

Stabilize metals

- · Properties: pH, organic matter, nutrients, salts, sorption capacity, state of carbon
- 2. How do these properties affect the amendment's potential to support vegetation and reduce toxicity?
 - Metrics: soil aggregate stability, water retention, reaction environment, leaching potential

Hypothesis

Source-separated, aerobically composted human manure (humanure) will provide better soil remediation potential than conventional co-treated, anaerobically digested biosolids due to:

- Less contamination
- More aromatic and O-functionalized C which will:
- Increase metal binding capacity
- Support soil formation
- Produce a more favorable environment for plant growth

Methods

Mine tailings (MT)

Pb-rich mine collected from pile in Idaho Springs, CO

Fig. 5 Pile where tailings were collected

Amendments

Topsoil (TS)

- Sandy loam, low OM
- Biosolids (BS)
- Anaerobic digestion Polymer added
- Composted Biosolids (C-BS)

30% biosolids

- Composted humanure (C-H) 1/3 human waste, 1/3 peat moss, 1/3 other waste
- 3-month aerobic, thermophilic compost (44 °C), turned ≥3x
- · 6-month cure

Incubation (40 day)

Materials dried, ground, sieved <2 mm (except BS) Vary wt% amendment

Soils and amendments

sent to CSU soil testing lab

Water content: bottom-up

saturation and 24 hr drain

· 20. 40 wt% for TS

- 5, 10, 20 wt% for others Maintain ~80% field capacity

Analysis (to date)

Mixtures air-dried

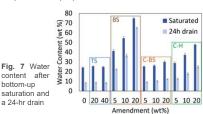
pH/EC: 1:2 (w) slurry

6 Soil/amendment mixtures during incubation. "TS-20" indicates 20 wt% topsoil. samples prepared in triplicates

Findings (so far)

Soil/amendment properties

Table 1 properties


ch

1	рН		3.6					
	OM LOI (%)	1.9						
	Field capacity (%)		10.9					
	Pb (ppm)		~10k					
	•							
		В	S	C-	BS	C-		
t	рН	7.	4	7.	98	4.		

able 2		BS	C-BS	C-H
mendment	pН	7.4	7.98	4.2
nemical	Total C (%)	28.7	8	32.9
roperties	Total N (%)	5.34	0.93	3.2
	P as P ₂ O ₅ (%)	7.16	0.8	0.68
	K as K ₂ O (%)	1.95	0.22	0.45
	Soluble salts (mmhos/cm)	5.58	0.6	1.83
	Ca (%)	13.17	1.18	1.78
	Zn (ppm)	697	73	113
	Fe (ppm)	18502	3788	6855
	Cu (ppm)	323	20	20

Post-incubation properties

- TS did not affect water retention
- BS significantly increased water content, pH, Ξ_3^* and EC (high initial nutrient/salt/metal content)
- C-BS had little effect on water content, increased pH, and decreased EC
- C-H increased water content, barely increased pH (low initial pH), and increased EC at 20 wt%

0 20 40 5 10 20 5 10 20 5 10 20 Amendment (wt%)

Fig. 8 1:2 (w:w) pH by slurry method

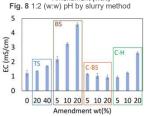


Fig. 9 1:2 electrical conductivity (EC)

Future measurements

Soil properties:

- Soil redox potential
- OM in soils SOM LOI
- State of carbon ¹³C-NMR
- Soil formation wet aggregate stability*

Toxicity metrics:

- State of Pb -XANES*
- Leaching potential desorption studv*

to be measured with and without incubation

Feedback appreciated!! @

RFP

Past literature

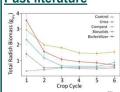


Fig. 7 Humanure-compost-amended soil yielded highest radish biomass over 6 crop cycles. Compost increased soil organic matter over 230-day period and reduced water leached, compared to biosolids. Adapted from Ryals, et al.5

bottom-up

concentration of Cd/Pb in roots/shoots of wavyleafed saltbush grown in soil with compost added. From Li, et al.6

Practical considerations

Sanitation infrastructure

Sewers costly to build/maintain Solid waste collection: less fixed infrastructure, lower cost, implementation/transition costs

Amendment application Table 3 amendment moisture content Reapplication requirements Moisture (wt %) 79.3 4.3 6.1 Contaminant buildup over time (co-treated waste)

Only part of solution: compost can stabilize low-level contamination after major pollution sources are removed or covered Site-specific resources, capacities, and needs

Acknowledgements

- Colorado State University Soil, Water, and Plant
- Testing Lab (Denver, CO) Metro Water Recovery (Denver, CO)
- A1 Organics (Denver, CO)
- East Jesus Slab City, CA 5. NSF Graduate Research Fellowship

References "Rising cost of solids handling and disposal necessitates a

- smarter approach", Treatment Plant Operator, 2024. Günther, F. Energy and the Environment, 2007. Bourdin, J. Goats and Soda NPR, 2025.
- Birdsall, K. Healthy Developments, 2021

- Li, J., et al. Plants, 10, 2021.
- Ryals, R., et al. Frontiers in Sust. Food Sys., 5, 2021