Characterization and Monitoring of Fugitive Emissions at the DuPont FUSRAP Site

PNNL-SA-217723

Satish K. Nune,^a Eugene V. Morrey,^a Stephen Davidson,^a Angie Melville,^a Tom Brouns,^a Amanda Lawter,^b Kristin D. Lammers^b and Daniel M. Sirkis^b ^aPacific Northwest National Laboratory, ^bThe U.S. Army Corps of Engineers (USACE)

- 1942 DuPont Chambers Works Site (DCWS), begins support to the Manhattan Engineering District Project (MED).
- **1942-47** DCWS was under contract to the USACE MED to process uranium compounds and uranium scrap to produce uranium tetrafluoride, uranium hexafluoride, and uranium metal.

1949 USACE and AEC Assess Radioactive Contamination at site. Some equipment buried in building at Niagara Falls Storage Site. Rest of site declared clean for unrestricted use. DuPont begins using MED contaminated soil and building material as fill across site.

1998 U.S. Army Corps of Engineers begins cleanup at DuPont

Issues:

- 1. Significant chemical contamination unrelated to FUSRAP program
- 2.Excavation and stockpiling can release volatile chemical compounds into the atmosphere and undesirable odors.

The USACE is partnering with PNNL to better understand chemical emissions and odors and identify previously unidentified compounds for concerns of health and safety.

- ❖ PNNL collaborated with USACE to evaluate direct-read odor detection instruments and demonstrate their potential to provide greater insights into odor sources.
- In addition, PNNL developed a vapor-sampling method and refined methodologies for field-portable instruments.

PNNL is operated by Battelle for the U.S. Department of Energy

Direct Read and Sampling Equipment

Shinyei Handheld Instruments

- Shinyei handheld instruments were utilized to help identify odor hot spots (odor plume locations and centroids).
- ❖ The Shinyei instrument OMX-ADM offers immediate insight into the chemical source of the odors.

Sample #		OMX-ADM				
	Sample Identification	Odor Strength	Odor Intensity			
24-1	Air Sample - Cell D3 Excavation North	1-31	2.5			
24-3	Air Sample - Cell D3 Excavation In the Hole	14	2.5			
24-4	Air Sample - 100' North of Location 24-1	0	2.5			
24-6	Air Sample - 194' North of Location 24-1	0	2.5			
25-1	Air Sample - Cell D3 Excavation Southwest	695	3.5			
25-2	Air Sample – Same location as 25-1	99	2.5			
25-3	Air Sample - Cell D3 Excavation In the Hole	NM	2.5			

Sensigent MSEM 160

Sample #	Sample Identification	SO₂ (ppm)	H₂S (ppm)	SH (ppm)
25-0	Background Measurement: Tedlar® Bag Filled with UHP N ₂	0.21	0.00	0.00
24-1	Air Sample - Cell D3 Excavation North	0.20	0.46	0.04
24-3	Air Sample - Cell D3 Excavation In the Hole	0.19	0.33	0.01
24-4	Air Sample - 100' North of Location 24-1	0.20	0.47	0.02
24-5	Headspace Sample - From Location 24-3	0.19	0.37	0.04
24-6	Air Sample - 194' North of Location 24-1	0.19	0.48	0.09
25-1	Air Sample - Cell D3 Excavation Southwest	0.17	0.75	0.70
25-2	Air Sample – Same location as 2-1	0.16	0.60	0.43
25-3	Air Sample - Cell D3 Excavation In the Hole	0.18	0.41	0.07

- \clubsuit The two highest mercaptan and H₂S readings (25-1 and 25-2) were concurrent with the highest Shinyei ADM readings (695 and 99 respectively).
- One complicating factor is that the mercaptan electrochemical sensor is known to have a significant (160%) cross sensitivity with H₂S, meaning that some or all of the measured mercaptan concentration may have been due to H₂S.
- ❖ A proton transfer reaction mass spectrometer (PTR-MS) measurement was performed to speciate H₂S and organosulfur compounds to help resolve mercaptans

VOC Analysis via Hapsite GC-MS

		24-5	25-4	24-3	25-3	24-1	24-4	24-6		Occupational		Odor	
	Trailer	Headspace	Headspace	Air Sample	Maximum	Exposure	Maximum	Detection	Maximum				
	Background	Sample	Sample	Excavation	Excavation	Location 1	Location 2	Location 3	Air Sample	Limit	Air Sample	Threshold	Air Sample
Analyte Name	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	% OEL	(ppb)	% ODT
Benzene	<dl< td=""><td>935.5</td><td>1701.9</td><td>28.4</td><td>22.8</td><td>3.1</td><td>0.7</td><td>0.8</td><td>28.4</td><td>20</td><td>142%</td><td>2690</td><td>196</td></dl<>	935.5	1701.9	28.4	22.8	3.1	0.7	0.8	28.4	20	142%	2690	196
Cyclohexane	<dl< td=""><td>747.8</td><td>1086.2</td><td>2.8</td><td></td><td></td><td></td><td>1.6</td><td>2.8</td><td>100000</td><td>0%</td><td>2470</td><td>0%</td></dl<>	747.8	1086.2	2.8				1.6	2.8	100000	0%	2470	0%
Propane, 1,2-dichloro-	<dl< td=""><td></td><td></td><td></td><td></td><td>0.5</td><td></td><td></td><td>0.5</td><td>10000</td><td>0%</td><td>8660</td><td>0%</td></dl<>					0.5			0.5	10000	0%	8660	0%
Trichloroethylene	<dl< td=""><td></td><td></td><td>0.4</td><td></td><td></td><td></td><td></td><td>0.4</td><td>10000</td><td>0%</td><td>110000</td><td>0%</td></dl<>			0.4					0.4	10000	0%	110000	0%
Heptane	<dl< td=""><td>229.0</td><td></td><td>0.8</td><td>1.1</td><td></td><td></td><td></td><td>1.1</td><td>400000</td><td>0%</td><td>410</td><td>0%</td></dl<>	229.0		0.8	1.1				1.1	400000	0%	410	0%
Toluene	<dl< td=""><td>653.5</td><td>544.0</td><td>6.4</td><td>9.9</td><td>22.9</td><td>0.4</td><td>1.0</td><td>22.9</td><td>20000</td><td>0%</td><td>350</td><td>7%</td></dl<>	653.5	544.0	6.4	9.9	22.9	0.4	1.0	22.9	20000	0%	350	7%
Benzene, chloro-	<dl< td=""><td>1620.6</td><td>1573.8</td><td>49.1</td><td>73.9</td><td>6.0</td><td>1.1</td><td>5.1</td><td>73.9</td><td>10000</td><td>1%</td><td>980</td><td>8%</td></dl<>	1620.6	1573.8	49.1	73.9	6.0	1.1	5.1	73.9	10000	1%	980	8%
Ethylbenzene	<dl< td=""><td>350.3</td><td>421.5</td><td>6.3</td><td>8.7</td><td>2.4</td><td>0.4</td><td>0.8</td><td>8.7</td><td>20000</td><td>0%</td><td>170</td><td>5%</td></dl<>	350.3	421.5	6.3	8.7	2.4	0.4	0.8	8.7	20000	0%	170	5%
p-Xylene	<dl< td=""><td>752.7</td><td>545.5</td><td>2.5</td><td>15.9</td><td>1.0</td><td>0.1</td><td>0.3</td><td>15.9</td><td>20000</td><td>0%</td><td>324</td><td>5%</td></dl<>	752.7	545.5	2.5	15.9	1.0	0.1	0.3	15.9	20000	0%	324	5%
Styrene	<dl< td=""><td></td><td></td><td>0.4</td><td></td><td>0.9</td><td>0.6</td><td>0.9</td><td>0.9</td><td>10000</td><td>0%</td><td>100</td><td>1%</td></dl<>			0.4		0.9	0.6	0.9	0.9	10000	0%	100	1%
Nonane	<dl< td=""><td>293.7</td><td>138.1</td><td>2.9</td><td>3.8</td><td>1.0</td><td>0.3</td><td>2.0</td><td>3.8</td><td>200000</td><td>0%</td><td></td><td></td></dl<>	293.7	138.1	2.9	3.8	1.0	0.3	2.0	3.8	200000	0%		
Benzene, (1-methylethyl)-	<dl< td=""><td>49.6</td><td>33.7</td><td>1.9</td><td>3.2</td><td>0.5</td><td>0.2</td><td>0.4</td><td>3.2</td><td></td><td></td><td></td><td></td></dl<>	49.6	33.7	1.9	3.2	0.5	0.2	0.4	3.2				
Benzene, 1-ethyl-4-methyl-*	NM			1.9									
2-Chlorotoluene	<dl< td=""><td>406.1</td><td>123.3</td><td>2.6</td><td>2.9</td><td></td><td></td><td>2.5</td><td>2.9</td><td>50000</td><td>0%</td><td></td><td></td></dl<>	406.1	123.3	2.6	2.9			2.5	2.9	50000	0%		
Benzene, propyl-	<dl< td=""><td></td><td></td><td>1.5</td><td>2.8</td><td>0.6</td><td>0.1</td><td></td><td>2.8</td><td></td><td></td><td></td><td></td></dl<>			1.5	2.8	0.6	0.1		2.8				
Benzene, 1,3,5-trimethyl-	<dl< td=""><td>42.5</td><td>24.8</td><td>9.3</td><td>15.5</td><td>2.2</td><td>0.3</td><td>1.2</td><td>15.5</td><td>10000</td><td>0%</td><td>2400</td><td>1%</td></dl<>	42.5	24.8	9.3	15.5	2.2	0.3	1.2	15.5	10000	0%	2400	1%
Benzene, 1,2,3-trimethyl-*	NM			8.6									
Benzene, 1,2,4-trimethyl-	<dl< td=""><td>9.4</td><td>7.4</td><td>5.8</td><td>13.2</td><td>1.9</td><td>0.4</td><td>0.4</td><td>13.2</td><td>10000</td><td>0%</td><td>2400</td><td>1%</td></dl<>	9.4	7.4	5.8	13.2	1.9	0.4	0.4	13.2	10000	0%	2400	1%
Benzene, 1,3-dichloro-	<dl< td=""><td>7.8</td><td>2.6</td><td>2.9</td><td>1.9</td><td>1.1</td><td>0.5</td><td>2.7</td><td>2.9</td><td></td><td></td><td></td><td></td></dl<>	7.8	2.6	2.9	1.9	1.1	0.5	2.7	2.9				
Benzene, 1,4-dichloro-*	NM			4.1									
Benzene, 1,2-dichloro-	<dl< td=""><td>211.1</td><td>68.5</td><td>3.3</td><td>45.1</td><td>1.4</td><td>0.8</td><td>4.2</td><td>45.1</td><td>25000</td><td>0%</td><td>700</td><td>6%</td></dl<>	211.1	68.5	3.3	45.1	1.4	0.8	4.2	45.1	25000	0%	700	6%
Carbon disulfide	<dl< td=""><td>38.4</td><td>51.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	38.4	51.9										
Ethene, 1,1-dichloro-	<dl< td=""><td>5.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	5.2											
Ethene, 1,2-dichloro-, (E)-	<dl< td=""><td>3.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	3.1											
Ethene, 1,2-dichloro-, (Z)-	<dl< td=""><td>2.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	2.8											
Total Organics by Hapsite 6309.5		6271.6	141.8	220.7	45.6	5.9	24.0					34%	
* Additional analytes measured with 40°F Method													

- Headspace and air samples largely consist of BTEX (benzene, toluene, ethylbenzene, and xylene)
- ❖ Headspace concentrations: 2-3 orders of magnitude higher than ambient air near excavation
- ❖ Benzene reached 142% of ACGIH TWA
- Benzene elevation warrants monitoring and controls

Conclusions

PNNL developed and validated a vapor sampling method to support reliable detection and quantification of airborne contaminants. We also demonstrated and refined methodologies for field-portable analytical instruments, confirming their capability to provide actionable real-time data in operational environments. The Hapsite ER can be used to perform to an EPA TO-15 type method similar to commercial laboratories but can also be used in a portable mode to directly sample breathing air. Results from direct-read instruments were compared with offsite laboratory methods (GC-MS and PTR-MS) to build confidence and interpretive guidance for field data.

For additional information, contact: