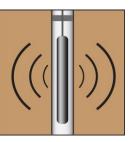

## A method selection tool to improve geophysical and hydraulic characterization on the Hanford Site

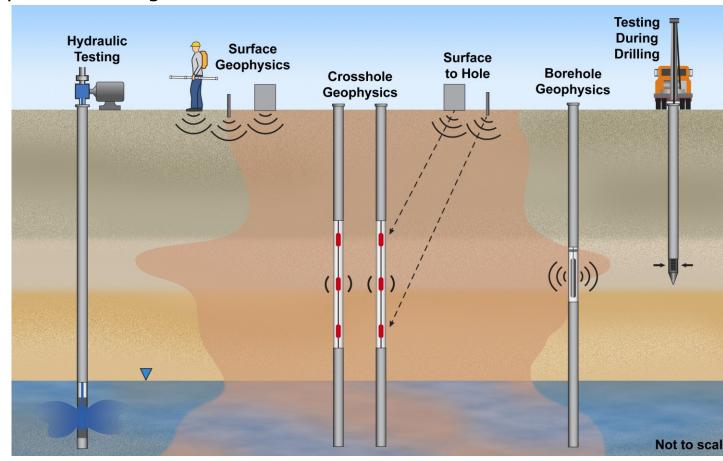



Judy Robinson, Fred Day-Lewis, Rebecka Iveson, Klaudio Peshtani, Inci Demirkanli, Rob Mackley Pacific Northwest National Laboratory










**Summary:** A geophysical and hydraulic method-selection tool, named the **Sampling and Analysis Plan – Method Selection Tool (SAP-MST)** has been created to support integrated site characterization and/or monitoring. Environmental remediation at complex sites, such as the Hanford Site in southeastern Washington state and other radionuclide-contaminated sites within the U.S. Department of Energy complex, requires careful planning that considers and weighs the complementary and competing goals of site characterization. SAP-MST has been designed to meet these needs.

#### Introduction

Site characterization and/or monitoring activities involve a set of technical interrogation methods to address the specific data needs related to these characterization components. At the Hanford Site, a suite of geophysical, hydraulic, and other field methods have been used for subsurface characterization, remedy monitoring, and parameter estimation.

SAP-MST is an Excel tool designed to help select geophysical and hydraulic methods based on specific data needs and site conditions. Methods are separated into geophysical and hydraulic categories and grouped by data acquisition configuration (e.g., surface, singlewell, cross-well). The figure below provides a simplified representation of the methods and data acquisition configurations included in SAP-MST.



A Data Quality Objective (DQO) framework (EPA 2006) was adopted for defining site-specific investigation objectives. The initial steps in the DQO workflow are to identity the problem and study goals to address data gaps. In SAP-MST, the user selects DQOs relevant to their specific objectives. These are divided into generalized themes (left column).

| Vadose Zone                                                |                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Contaminant Source and Behavior                            | Determine spatial distribution of contaminant source                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Containmant Source and Benavior                            | Determine downward flux of a contaminant source to groundwater                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Geology                                                    | Determine subsurface structure (stratigraphy, soil type, lithology)                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Hydrogeologic Conditions                                   | Estimate hydrogeologic properties [e.g., unsaturated conductivity (K <sub>unsat</sub> )]                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                            | Monitor vadose zone system dynamics (e.g., moisture content changes, contaminant migration)                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Monitoring                                                 | Monitor the spatial and temporal distribution of an amendment (e.g., delivery and transport of an injected chemical amendment, changes in moisture or porewater saturation during soil flushing)                                                                                  |  |  |  |  |  |  |  |
| Subsurface Detection                                       | Subsurface Detection Detect/delineate subsurface targets (e.g., archaeology, tanks, pipes)                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Saturated Zone                                             |                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Contaminant Distribution and                               | Characterize the spatial distribution of contamination                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Behavior                                                   | Determine vertical contaminant concentration profile                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Geology Characterize the extent of specific geologic units |                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                                                            | Characterize spatial distribution and heterogeneity of hydrogeologic properties (e.g., preferential flow pathways and boundaries, high K zones)                                                                                                                                   |  |  |  |  |  |  |  |
| Hydrogeologic Properties                                   | Estimate well and aquifer properties that relate to groundwater flow (e.g., specific capacity, hydraulic conductivity, specific yield and/or storage, aquifer thickness)                                                                                                          |  |  |  |  |  |  |  |
|                                                            | Estimate hydrologic properties that relate to contaminant transport (e.g., porosity, dispersivity, sorption, mass transfer rates)                                                                                                                                                 |  |  |  |  |  |  |  |
|                                                            | Monitor aquifer system dynamics (e.g., saturation change, water table fluctuation, contaminant migration)                                                                                                                                                                         |  |  |  |  |  |  |  |
| Saturated Zone Monitoring                                  | Monitor active remediation, such as extent of specific injectate (or amendment) as delivered (e.g., injected). This could be for a specific objective such as contaminant containment and/or source containment. Monitor contaminant migration in response to active remediation. |  |  |  |  |  |  |  |
|                                                            | Monitor post-active remediation conditions [e.g., monitored natural attenuation (MNA)]                                                                                                                                                                                            |  |  |  |  |  |  |  |

### U.S. DEPARTMENT OF ENERGY BATTELLE





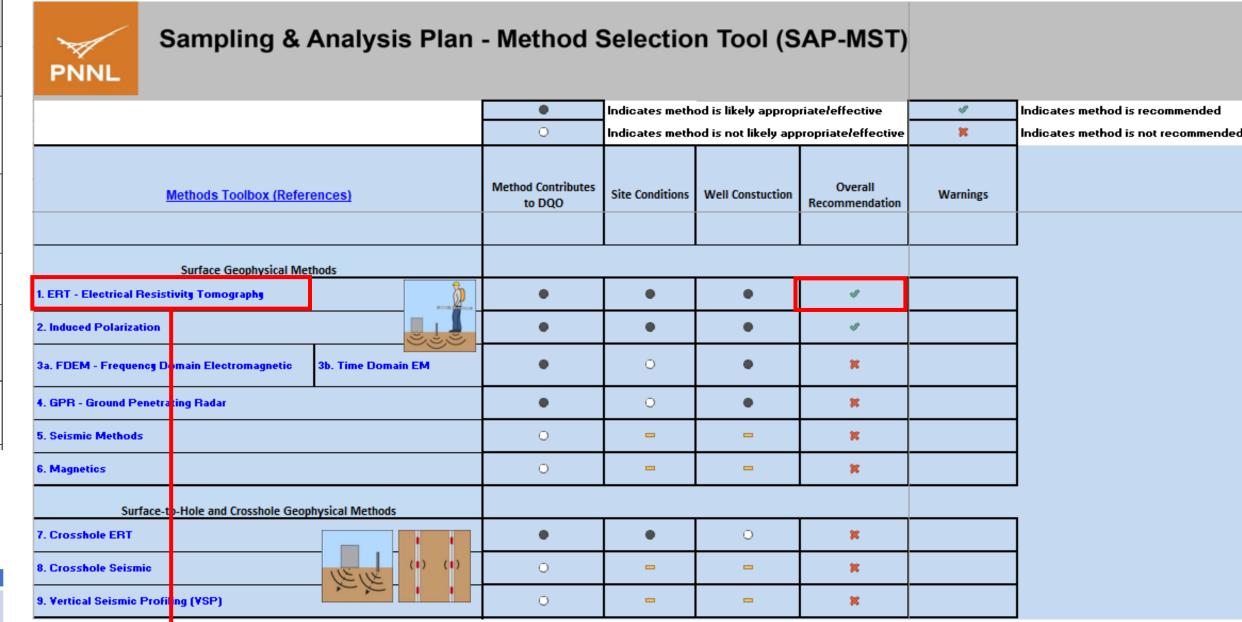
#### SAP-MST Logic, Constraints and Workflow

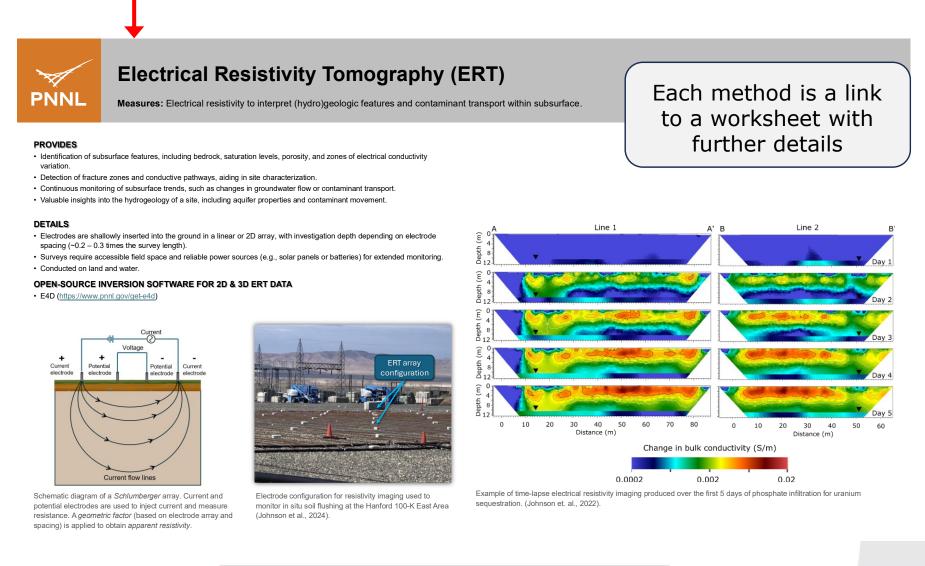
The geophysical and hydraulic methods available in SAP-MST were selected based on their recognized, emerging, or potential utility at Hanford. An example of the details considered in SAP-MST for seismic and electrical geophysical methods are shown below.

| Category   | Method                                             | Measurement                                                                                                                                                         | Application                                                                                         | Relative<br>Scale        | Relative<br>Cost | Level of Effort | Considerations                                                                                                                                                           |
|------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Reflection                                         | Analysis focuses on reflection evens to extract surbsurface structures and interfaces.                                                                              | Location of subsurface boundaries                                                                   | m km<br> ←→              | \$\$\$           |                 | Small source-receiver offsets     Need many source-receiver locations     Processing is relatively expensive                                                             |
| Seismic    | Refraction                                         | Analysis focuses on of the first arrival times of the initial ground movement from seismic sources from different offset locations to extract the P-wave velocities | Correlated with lithology, porosity, saturation                                                     | m km<br> ←→              | <b>\$\$</b>      | 8               | Large source-receiver offsets     Need fewer source-receiver locations     Processing is relatively less expensive                                                       |
|            | Surface Waves                                      | Analysis commonly focuses on the dispersion of surface waves to extract the shear wave velocities                                                                   | Correlated with lithology, porosity and used to investigate soil strength                           | m km<br> ←→ <br> ਾਾਾਾਾ   | \$\$             |                 | Active (multichannel analysis of surface<br>waves - MASW) and passive (microtremor<br>survey method - MSM) are used     Landstreamers allow for rapid data<br>collection |
|            | Vertical seimic profiling<br>(Surface-to-borehole) | Measures seismic arrivals from a surface seismic source with one or more receivers at depth in a borehole                                                           | Stratigraphic correlation with seismic velocities                                                   | m 100m<br> ←→ <br>  100m | \$               |                 | Can be combined with surface measurements for more robust intepretations                                                                                                 |
| Electrical | Electrical resistivity tomography (ERT)            | land measilrement of notential throllon                                                                                                                             | Sensitive to lithology, porosity, temperature, grain size and sorting                               | m km<br> ←→              | \$               |                 | Time lapse ERT can evaluate processes over time (e.g. remedial injection), removing the static effects of lithology/geology for a more robust interpretation             |
|            | Induced Polarization (IP)                          | Measures the temporary, reversible storage of charge that occurs after an ERT measurement                                                                           | Sensitive to mineral/grain<br>surfaces and can be used to<br>identify finer<br>layers/heterogeneity | m km<br> ←→              | \$\$             |                 | Can reduce ambiguity in static ERT images                                                                                                                                |

SAP-MST workflow also considers site conditions and well construction to determine relevant geophysical and hydraulic methods.

| # | Site Condition                                                                                                                                         |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Is the investigation during drilling (i.e., not post drilling)?                                                                                        |
| 2 | Are there nearby wells that can be used for hydraulic observation in the saturated zone?                                                               |
| 3 | Is the goal depth of investigation (DOI) > 30% of the length of a possible survey line on the ground surface?                                          |
| 1 | Is there a large fluid conductivity contrast between native groundwater and target fluids (e.g., contamination, amendments)?                           |
| 5 | Is the target DOI within the top 5 m?                                                                                                                  |
| 6 | Is disturbance of the ground (e.g., installation of electrodes or geophones) prohibited?                                                               |
| 7 | Are there sources of EM interference (utilities, metal pipes, etc.)                                                                                    |
| 8 | Are there high electrically conductive shallow materials (fine-<br>grained sediment, metallic content, reinforced concrete) in the<br>near subsurface? |
| 9 | Is GPS signal problematic at the site?                                                                                                                 |


| #  | Well Construction Criteria                                                    |   | Options                                                                   |
|----|-------------------------------------------------------------------------------|---|---------------------------------------------------------------------------|
| 10 | What is the well casing material?                                             | • | Steel [Default]<br>PVC (or non-<br>metallic)<br>No wells                  |
| 11 | Are the screen(s) or open interval long relative to the length of the casing? | • | No [Default]<br>Yes                                                       |
| 12 | What material is in the annular space, around the casing?                     | • | Bentonite/conductive<br>grout [Default]<br>Resistive grout<br>Native soil |
| 13 | If there's a pump in the well, is removal possible?                           | • | Yes [Default]<br>No                                                       |


# Select one or more Generalized DQOs Specify the Site Conditions and Well Construction Review the Methods Selected If there are uncertainties in DQOs or site conditions, try different scenarios to determine sensitivities and impact on methods selected

https://www.epa.gov/quality/guidance-systematic-planning-using-data-quality-objectives-process-epa-qag-4.

#### **Site-specific Method Selections**

The Method Selections are provided as a Summary, which shows the overall recommendations and what criteria either ruled-in or ruled-out a method selection. Additional granularity is provided within the tool (not shown below) with information on the exact criteria that ruled-in or ruled-out a method selection.





#### Next steps

- Add geochemical site investigation methods and the additional DQOs that are applicable to these methods
- Engage SAP-MST with working technical professionals conducting site characterization at Hanford

References: EPA. 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA QA/G-4. United States Environmental Protection Agency EPA/240/B-06/001. Washington, DC.

**Acknowledgements:** Funding for this work was provided by the U.S. Department of Energy Hanford Field Office under the Deep Vadose Zone (DVZ). Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL01830.

