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Introduction
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Historic use of per- and polyfluoroalkyl substances (PFAS) and 
subsequent concerns about toxicity and carcinogenicity have led to 
efforts to limit exposure1. Among the estimated 12,000 PFAS 
compounds that may be in use today, less than 100 can be identified 
analytically2. Artificial Intelligence/Machine Learning (AI/ML) models 
capable of detecting both known and emerging contaminants using 
limited historical data are of keen interest. In particular, the ability to 
discriminate among PFAS sources, such as Aqueous Film Forming 
Foam (AFFF) and other commercial formulations (CF), is of interest 
to facilitate responsible environmental management. This study uses 
AI/ML methods on mass spectral data to achieve source attribution.

Data
Data for this study comes from the NIST PFAS database that uses 
the Database Infrastructure for Mass Spectrometry (DIMSpec) toolkit 
and contains LC-MS/MS spectra for 104 PFAS samples resulting in a 
total of 7,194 high-resolution MS/MS spectra (Figure 1). All MS/MS 
data are transformed into fixed-length numeric encodings by using 
intensity binning.

Figure 2. Schematic of Model Pipeline. A dimension reduction model is used, followed by a classification model

Figure 1. Number of MS/MS Spectra across AFFF and Commercial Formulation Subtype

A series of three model pipelines were implemented with each consisting of a dimension reduction 
model followed by a classifier (Figure 2). Dimension reduction techniques include principal 
component analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Three 
classifiers were employed: Linear Discriminant Analysis (LDA), Logistic Regression (LR), and 
Random Forests (RF). After testing multiple combinations of dimension reduction and classifiers, a 
combination of UMAP and RF models had the best performance for classifying AFFF and CF.

Results
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After hyperparameter optimization, the model using UMAP and RF correctly 
distinguished AFFF from CF with 98% accuracy. Two AFFF samples were 
misclassified as CF, as shown in Figure 3(a). However, deeper investigation of 
sample compositions Figure 3(b) shows high similarity to other commercial 
formulations. Next steps will evaluate environmental samples with these models.

Logistic Regression Example

Figure 3. (a) Visualization of reduced dimension components of the classification model. (b) Parent compounds for the two 
misclassified AFFF MS2 fragments (boxed top left in grey) compared to other commercial formulations (CF). 
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