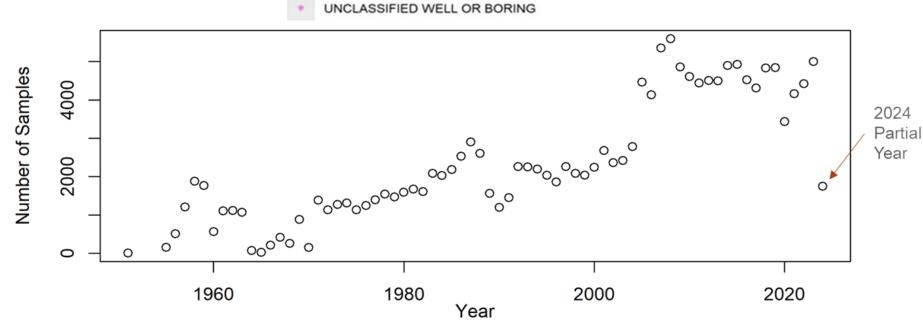

Statistical Analysis of Hanford Data to Determine Representative Groundwater Formulations


Introduction

- Decades of plutonium production operations at the Hanford Site in southeastern Washington State have resulted in soil and groundwater contamination.
- Understanding site groundwater chemistry is critical for evaluating contaminant transport, predicting plume behavior, and designing effective treatments.
- This work supports implementation and design of environmental remedies with technically defensible, site-specific synthetic groundwater formulations.

Groundwater Monitoring Data

- 42 constituents and 3030 groundwater monitoring wells were considered for samples collected from 1951 through mid-2024
- 165866 observations (distinct) well, sample event, constituent)
- Looked at the spatial distribution of wells and the count of sample events over time SAMP_SITE_TYPE
- Focused on 2022-2023 data (more data, reflects recent conditions)

AQUIFER TUBE

Hanford Aqueous Chemistry Synthetic Formulations

• Data for synthetic groundwater, perched water, and porewater used in laboratory testing

	Concentration (mg/L)								
Constituent	SPW ¹	SPW + NO3 ²	200W-GW ³	H-SGW ⁴	VZPW ⁵	IFRC 300ASGW-1 ⁶	Lysimeter Porewater ⁷		
Na	402.5	698.4	36.5	5.9	126.4	33.1	32.9		
CO ₃	661.5	661.5	102.6	99.2	24.0	96.0	91.0		
K	12.1	12.1	4.8	4.3	27.4	6.2	3.4		
Mg	65.7	65.7	14.9	3.7	121.5	12.4	6.3		
SO ₄	481.4	481.4	35.2	47.3	1402.6	49.0	53.8		
Ca	22.6	22.6	42.9	79.8	481.0	39.1	30.5		
Cl 8	117.1	117.1	93.4	13.0	255.2	46.1	4.3		
NO ₃	0.0	798.1	0.0	0.0	210.8	28.5	49.6		
Si	0.0	0.0	0.0	2.0	0.0	0.0	13.8		

- ¹ Synthetic Perched Water, (Saslow et al., 2018) ² Synthetic Perched Water + NO3, (Saslow et al., 2018)
- ³ 200 West Area Groundwater, (Lawter et al., 2021) ⁴Hanford Simulated Groundwater, (Truex et al., 2017)
- ⁵ Table 2.8, VZ Pore Water Simulant, in (Serne et al., 2015) ⁶ (Zachara et al., 2010), (Zachara et al., 2009, PNNL-SA-64785)
- ⁸ Does not include Cl from HCl added for pH adjustment

For additional information, contact:

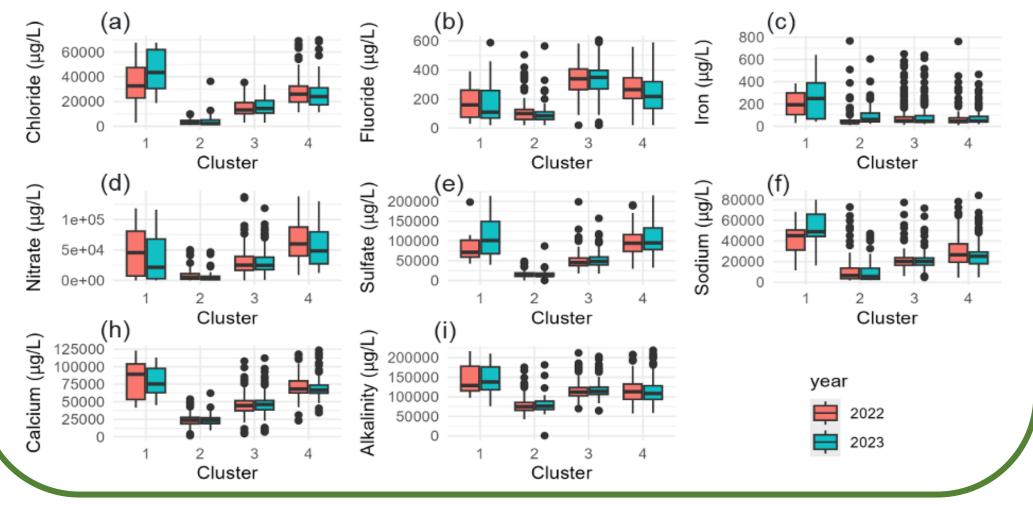
⁷ Data adapted from (Meyer et al., 2024)

Parameters of Interest

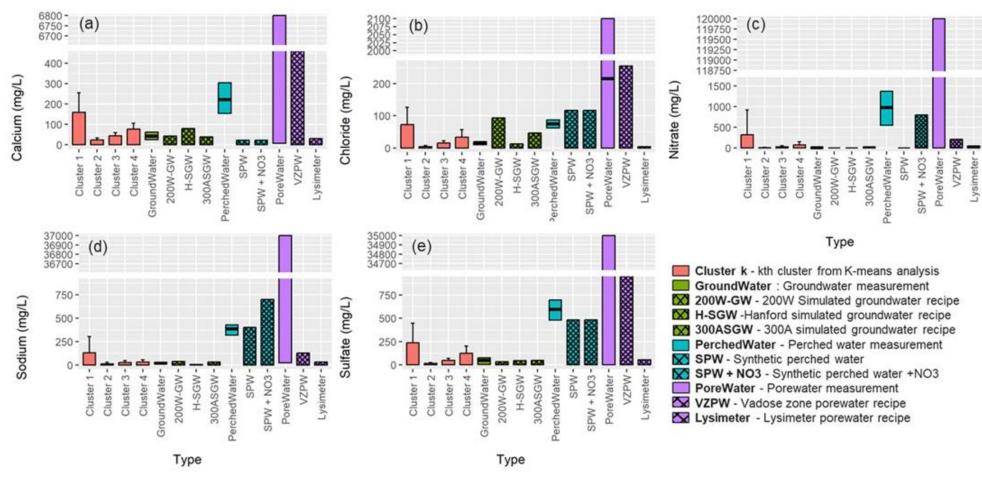
- Parameters of interest are shaded in the table (including multiple synonyms for carbonate); those highlighted in **bold red** were selected for statistical analysis.
- Not all constituents are assayed for every sample; the table shows the percent of samples for the 522 wells sampled in 2022-2023 that have analytical results

Percent Data Completeness for 2022-2023 Data from 522 Wells

Constituent	% Data	Constituent	% Data	Constituent	% Data
Alkalinity	100	Carbonate_ion	0	pH_Measurement	99.9
Aluminum	28.1	Chloride	100	Phosphate	40.3
Ammonia	6.0	Copper	73.4	Selenium	67.9
Ammonium_ion	0	Cyanide	27.5	Silicon	0
Arsenic	67.9	Dissolved_organic_carbon	0	Sodium	100
Arsenic_filtered	0	Dissolved_oxygen	98.2	Strontium_90	41.5
Barium	67.6	Fluoride	100	Sulfate	100
Bi_carbonate_alkalinity	14.1	Hexavalent_Chromium	50.1	Technetium_99	37.2
Bicarbonate	9.4	lodine_129	24.2	Total_dissolved_solids	3.6
Calcium	100	Iron	100	Trichloroethene	44.7
Calcium_Carbonate	0	Manganese	73.5	Tritium	47.4
Carbon_14	24.5	Nitrate	100	Turbidity	99.9
Carbon_tetrachloride	44.7	Nitrite	100	Uranium	73.6
Carbonate_alkalinity	21.0	Oxidation_Reduction_Potential	6.15	Zinc	100

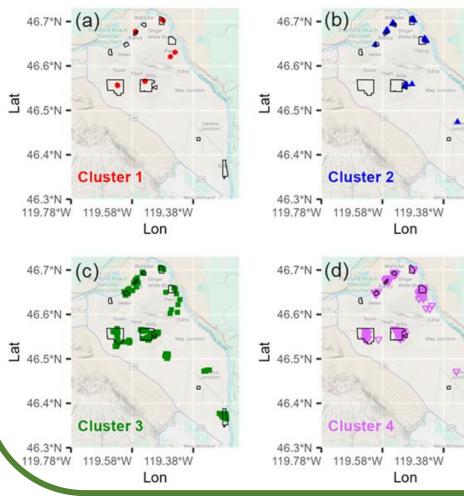

K-Means Clustering & Principal Component Analysis

- K-means clustering was used to group the wells based on similarities in groundwater chemistry; four clusters was the optimal number to capture variance.
- Principal component analysis (PCA) was applied to reduce dimensionality and highlight the main patterns in the data.
- Concentrations for the selected constituents were compared in boxplots by parameter for each cluster to understand geochemical variability.
- Insights from clustering help explain geochemical variations. 2022 and 2023 follow similar patterns in each cluster, though there are some year-over-year variations.


Wells per Cluster by Year

	Number of Wells						
Year	Cluster1	Cluster2	Cluster3	Cluster4			
2022	17	96	196	123			
2023	25	60	206	171			

Boxplots Showing the Concentration Distributions of the Eight Selected Constituents across the Four Clusters for the Years 2022 and 2023


Comparison of Clusters versus Synthetic Formulations and Data from Other Sources

- Cluster 1 has the highest constituent concentrations, suggesting wells most impacted by natural or anthropogenic processes.
- Cluster 2 has the lowest constituent concentrations, corresponding to wells located along river (see spatial distribution), showing dilution effects.
- The synthetic groundwater formulations more closely resemble Cluster 1, representing worst-case scenarios of higher constituent concentrations, supporting use for conservative testing of groundwater remediation technologies.

Spatial Distribution of Wells for Each Cluster for the 2023 Data

C.D. Johnson, I.V. Patel, X. Lin, E. Cordova, M.S. Doughman, J.E. Szecsody, C.J. Thompson, A.J. Kugler, C.I. Pearce, and H.P. Emerson

Conclusions

- Statistical analysis of groundwater data from 2022-2023 provides a defensible technical basis for datadriven synthetic groundwater formulations for Hanford remediation technology treatability testing.
- High ion strength perched water chemistry is adequately represented by existing synthetic formulations, but calcium impacts need investigation.
- Porewater chemistry is waste-site specific; need to assess sensitivity of remediation technology performance to different constituent concentrations.

Acknowledgement

Funding for this work was provided by the U.S. Department of Energy Hanford Field Office under the Deep Vadose Zone – Applied Field Research Initiative. The authors thank Steve Eklund for project guidance on Quality Assurance, Ilana Szlamkowicz for independent technical review. The authors also acknowledge Andy Plymale for contributing his extensive knowledge of Hanford Site biogeochemistry.

PNNL is operated by Battelle for the U.S. Department of Energy

Ivani Patel (509) 375-3747 ivani.patel@pnnl.gov

Elsa Cordova (509) 372-4481 elsa.cordova@pnnl.gov

11/5/2025 | PNNL-SA-217357