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Hanford Site Composite Analysis
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▪ The recently approved updated Hanford Site Composite Analysis (CA) is required to provide a 
reasonable expectation that U.S. Department of Energy low-level waste disposal, high-level 
waste tank closure, and transuranic waste disposal at the Central Plateau ensure radiological 
protection of the public.

▪ The CA includes a site-specific dose projection to a hypothetical future member of the public 
at points of assessment over a minimum 1,000-year compliance period (2070-3070) 
following the anticipated end of DOE site operations in 2070.

▪ The CA also provides a comparison with the performance measures during the post-
compliance period (3070-12070) to address potential peaks beyond the compliance period. 

▪ The CA has been organized using technical facets of inventory, waste form release, vadose 
zone (VZ), saturated zone, and dose. 



Composite Analysis Large Scale Vadose Zone Modeling
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▪ Operational Era 1943-1988 for plutonium 
production

▪ Major operational areas:
• 300 Area – uranium fuel rod production

• 100 Areas – reactors

• 200 Areas – chemical separations

▪ Focus of the Composite Analysis is the 200 
Areas, in support of low-level waste 
disposal Performance Assessments



Modeling Challenges: 
Large Number and Proximity of Waste Sites
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cribs

trenches

tank farms

burial 
grounds

tile 
fields

Inner Area 21 km2

Sites 200 
West

200 
East

Total

1 Liquid Rad Sites 152 191 343

2 Liquid Non-Rad Sites 24 20 44

3 Solid Waste Sites 128 107 235

4 Tank Leaks/Overfill Events 27 10 37

Total # Sites (1+2+3-4) 277 308 585



Modeling Challenges:
Vadose Zone Plume Commingling
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216-B-43 – B-49 Cribs:
• Disposal 1954-1955
• 33,800 m3 aq. volume
• ~128 Ci Tc-99

Commingling is related to: 
▪ Disposal characteristics (e.g., 

volumes, duration, rate, and time 
period)

▪ Hydraulic properties

▪ Distance between waste sites

216-B-50:
• Disposal 1965-1974 
• 92,800 m3 aq. volume
• <0.01 Ci Tc-99



Modeling Challenges:
Vadose Zone Plume Commingling
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Rapid initial migration to groundwater resulting from 
effluent disposal to cribs 216-B-43 through 216-B-49

Flushing due to effluent 
disposal to 216-B-50



Modeling Challenges:
Vadose Zone Plume Commingling
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The commingling effect of 
adjacent waste sites on 
subsurface transport cannot be 
captured using models 
• representing a single waste 

site
• simulating flow and transport 

using a 1D approach

Not recognizing 
commingling increases later 
transfer to groundwater

Not recognizing commingling 
decreases initial transfer to 
groundwater



GAIA Computational Cluster
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▪ 12 Dell R740 (2U) Servers, each with:

• Two Xeon Platinum 28-core processors @ 2.5 GHz

• 768 GBytes RAM

• 1 TByte SSD disk

• Quad 10 Gbps, Base-T Ethernet ports

• Dual, Hot-plug, Redundant Power Supply (1100W)

▪ Head node has an additional 10 TB hard disk.

▪ Two 10Gb Cisco Nexus 9300s switches to support intensive I/O 
communication between nodes.



Modeling Considerations and General Approach
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▪ Waste-site proximity and vadose zone plume commingling rule out a single 
waste site per model approach.

▪ Computational limitations rule out a single vadose zone model for the entire 
Inner Area.

▪ Based on scoping simulations, 4-5 million-node three-dimensional (3D) 
models, covering a domain area of about 1 km2, would need a run time of up 
to 1 week on GAIA for the Hanford operations period.

▪ Approximately 25 vadose zone models would capture all waste sites.



Model Domains of 26 Vadose Zone Models
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▪ 13 vadose zone models each in 200 
West and 200 East area.

▪ Models have source zones and 
buffer zones.

▪ To avoid double counting of 
inventory, contaminant releases are 
considered only in the source zones. 
In buffer zones, only water releases 
are used.



Example: 200 West Model Source Zones
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▪ Model source zones do not overlap 
Waste site radionuclide releases are only 
used in a single vadose zone model.



3D versus 1D Vadose Zone Simulations
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▪ The computational demands of the 3D VZ simulation suite are considerable, with a typical 
run time of several days per VZ model using a high-performance computer and 
parallelization.

▪ The intensive nature of the simulations complicates execution of extensive sensitivity and 
uncertainty analyses.

▪ One dimensional (1D) simulations have much smaller run times and are therefore more 
suitable for sensitivity and uncertainty analyses. Regulators and peer-review panels have 
been pushing to use 1D simulations primarily for this reason. 

▪ An alternative approach using 1D Tc-99 simulations of VZ transport below selected waste 
sites is applied, to the CA 3D simulation results, and evaluated for representativeness.

▪ The 1D simulations honor the leak/disposal characteristics and site footprint.



Disposal and Leak Volumes and Release Pore Volumes
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▪ Tank leaks or overfill events are in the order of tens to hundreds of m3. 

▪ Waste site disposal volumes range from a few m3 to ~108 m3.

▪ To estimate potential near-term contaminant impact to groundwater due to waste sites 
releases, volumes have limited value. Instead, the term Release Pore Volume (RSP) is 
preferred: 

 RSP = Disposal Volume / Waste Site Pore Volume

 (Waste Site Pore Volume = Pore space between the waste site footprint and the water 
table)

▪ If the RSP > 1, near-term (~within years/decades after release) waste site groundwater 
effects could be possible

▪ If the RSP < 1, near-term waste site groundwater effects are less likely



Site Selection
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▪ To investigate how the model dimensionality affects VZ transport and transfer rate to 
groundwater, several example waste sites and tank leaks were selected for analysis.

▪ In this presentation, the results of four of these are presented:

• The 241-A-105 tank leak represents tanks with leak/overfill events without the presence 
of adjacent fluid disposal sites causing commingling. 

• The 241-SX-115 tank leak represents tanks with similar events, but with adjacent 
aqueous volume releases. 

• The 216-B-18 site is an example of a crib without adjacent sites that could cause 
substantial commingling. 

• The 216-B-49 site is a crib located in an area with another high-volume crib that could 
lead to considerable mixing. 



241-A-105 Tank Leak
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Period Volume (m3) Release Pore 
Volume

Tc-99

1965 72 0.01 9.6

1970-1978 878 0.08 0

(0.73 Ci Solid Waste 
Release after 2043)

Release Data

No 216-A-105-related Tc-99 
contaminant plume has been generated 
in the saturated zone yet.



241-A-105 Tank Leak
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For both the 1D and 3D simulation, 
the transfer rates before the current 
time are too small to generate a 
groundwater plume.



241-A-105 Tank Leak
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Although transport for the 1D 
simulation is faster than for the 
3D simulation, peak arrivals are 
within a few decades, and 
overall, differences in rates are 
relatively minor.



241-A-105 Tank Leak
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The transfer area to 
groundwater is much larger 
than the tank footprint.

At the present time, the 1D 
VZ plume is slightly ahead 
of the 3D plume.



241-SX-115 Tank Leak
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Period Volume (m3) Release Pore 
Volume

Tc-99

1965 114 0.02 3.0

(0.753 Ci Solid Waste 
Release after 2043)

Release Data

A saturated zone Tc-99 contaminant plume has been 
developed and sustained for several decades and has been 
linked to a water line leak south of SX-115.



241-SX-115 Tank Leak
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The transfer rate for the 3D 
simulation, enhanced by the 
calibrated water line leak, is 
sufficient to generate and 
sustain a groundwater plume. 

That is not the case for the 
1D simulation.



241-SX-115 Tank Leak
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• The 3D simulation transfer 
rate is predicted to be 
sufficient to sustain the 
plume for a few more 
decades (until ~2040). 

• The 1D transfer rate will 
never be enough to generate 
a plume.



241-SX-115 Tank Leak
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At the present time, the 
3D simulation shows small 
concentrations in the VZ. 
However, multiplied by 
the aqueous flow rate, the 
resulting flux is sufficient 
to sustain a groundwater 
plume.

The 1D simulation 
contaminant migrates 
relatively slowly 
through the VZ.



216-B-18 Crib Disposal
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Period Volume (m3) Release Pore 
Volume

Tc-99

1956 8,520 0.59 34.4

Release Data

No saturated zone Tc-99 contaminant 
plume has been developed below the 
BC Cribs and Trenches Area.



216-B-18 Crib Disposal
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The 1D simulation predicts 
large transfer rates to the 
saturated zone and plume 
generation. No transfer is 
predicted for the 3D 
simulation.



216-B-18 Crib Disposal
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The 3D simulation predicts 
arrival at the groundwater in 
the future, consistent with 
the current lack of a plume 
underneath the BC Cribs and 
Trenches.



216-B-18 Crib Disposal
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The transfer area to 
groundwater is 
much larger than 
the tank footprint.

At the present time, 
the 1D simulation 
predicts considerable 
transfer to the 
groundwater.



216-B-49 Crib Disposal
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Period Volume (m3) Release Pore 
Volume

Tc-99

1955 6,700 1.18 23.1

Release Data

216-B-43 – 216-B-49 Cribs:
• Disposal 1954-1955
• 33,800 m3 aq. volume
• ~128 Ci Tc-99

216-B-50 Crib:
• Disposal 1965-1974 
• 92,800 m3 aq. volume
• <0.01 Ci Tc-99

A saturated zone Tc-99 contaminant plume has 
been developed and sustained for several decades.



216-B-49 Crib Disposal
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The 1D simulation transfer rates 
are only predicted to be 
sufficient to sustain a plume for 
up to 10 years.

The 3D simulation transfer rate 
produce rates that are double 
the 1D rates and stay above the 
plume-generating threshold 
through the present day.



216-B-49 Crib Disposal
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After ~2050, the 3D transfer 
rates are also not sufficient 
anymore to sustain the 
groundwater plume.



216-B-49 Crib Disposal
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The 3D simulation 
predicts lower 
concentrations 
but higher fluxes 
in the near future.

Flushing due to the 
216-B-50 disposal is 
apparent at the 
present time.



Summary
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▪ The CA VZ simulations were completed using 26 large 3D VZ models to 
capture plume commingling.

▪ An alternative 1D approach was suggested by regulators and peer reviews to 
allow for more effective sensitivity and uncertainty analyses.

▪ A 3D-1D comparison has been completed for several selected sites, with a 
focus on representativeness.



Conclusions
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▪ For waste sites without adjacent liquid sources, VZ transport is faster in 1D simulations.

▪ For waste sites with adjacent liquid sources, VZ transport is faster in 3D simulations.

▪ For tank leaks without commingling with adjacent liquid sources, both 3D and 1D 

simulations do not produce fluxes to groundwater sufficient for plume generation at 

the present time (241-A-105 example).

▪ For tank leaks with commingling with adjacent liquid sources, 1D simulations do not 

produce fluxes to groundwater sufficient for plume generation at the present time. The 

results are non-representative (241-SX-115 example).



Conclusions (continued)
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▪ For waste site disposals without commingling with adjacent liquid sources, 1D 

simulations produce fluxes to groundwater sufficient for plume generation, although 

no plumes are currently present. The results are non-representative (216-B-18 

example).

▪ For waste site disposals with commingling with adjacent liquid sources, 1D simulations 

typically only produce sufficient transfer rates to generate groundwater plumes for a 

short period of time. The 1D transfer rates are not representative for sustaining longer-

term plumes (216-B-49 example).

▪ Overall, most 1D waste site simulations yield unrepresentative results, making this  

modeling approach inappropriate for sensitivity and uncertainty analyses.
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