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Hanford Site and 300 Area
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▪ Hanford Site was used to produce nuclear 
material to support the defense mission of 
United States from 1943-1987

▪ The 300 Area
− Uranium fuel fabrication activities generated 

waste was discharged to surface ponds and 
trenches

− Persistent uranium groundwater plumes

▪ Selected remedy is monitored natural 
attenuation with enhanced attenuation in 
3-acre area (12,140 m2) of highest 
contamination 

− In-situ treatment with polyphosphate solutions

▪ Columbia River forms the Site boundary



Hanford Site 300 Area
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Site Conceptual Model
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▪ Columbia River stage fluctuations impacts 
water-table

− Daily fluctuations and seasonal variations are 
important

▪ Vadose zone encompassing the historically 
high and low water table elevations is called 
the Periodically Rewetted Zone (PRZ)

▪ Highly variable contamination in vadose 
zone

▪ Majority of the uranium associated with <2 
mm size fraction (sand, silt, and clay)

▪ Leachable (labile) uranium variable (up to 
60% of total uranium)

▪ U(VI) exists primarily in form of
− Precipitated phases (carbonates and phosphates)

− Adsorbed surface complexes on phyllosilicates and 
iron oxides



Study Approach
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▪ Enhanced Attenuation
− In-situ uranium sequestration by 

injecting polyphosphate solutions

− Field monitoring (including ERT)

− Laboratory analyses 

− Reactive transport modeling

− System scale flow and transport 
modeling

▪ Monitored Natural Attenuation
− Development of large-domain model

− Model calibration

− Model prediction



Enhanced Attenuation: 
Remedy Implementation
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▪ Stage A: smaller area (0.75 acres); November 2015; surface infiltration and 9 injection wells

▪ Stage B: larger area (2.25 acres); September 2018; 48 injection wells

− Mixture of Orthophosphate (NaH2PO4 and KH2PO4) and Pyrophosphate (Na4P2O7)

− Target phosphate conc: 8,250 mg/L; Injection rate: 189 L/min (50 gal/min) for 16 hours per well

− Total volume injected: 16 x 106 Liters (4.2 x 106 gallons); Phosphate mass delivered: 133,500 kg

Uranium

Phosphate

EC

GW Well: 399-1-17A

Stage A

Stage B



Enhanced Attenuation: Laboratory Analyses
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▪ Laboratory analyses performed on pre-treatment and post-treatment 
sediment samples collected from six co-located boreholes from 
approximately same depths

▪ Sequential extractions indicate dissolution of uranium carbonate and hydrous 
uranium silicates in post-treatment samples and reprecipitation as lower 
solubility uranium phosphate bearing mineral phases

▪ Total uranium that could be extracted from post-treatment samples was on 
average 33% lower compared to pre-treatment samples (based on sequential 
extraction)

▪ Labile uranium fraction was about 63% lower following treatment (based on 
1000-hr carbonate extraction)



Enhanced Attenuation: Reactive Transport Modeling
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▪ Uranium leaching rate 
estimated using single-
site kinetic rate constants

− Due to complex assemblage 
of uranium bearing mineral 
phases the relative 
influence of each mineral 
phase is difficult to 
estimate

▪ 1-D finite-difference 
transport model used to 
fit and estimate the 
forward and reverse 
kinetic rate constants

− Rate constants matched 
with other independent 
estimates 

  
a. Sample G-29 (pre-injection pair) b. Sample G-118 (post-injection pair) 

  

  
c. Sample G-20 (pre-injection pair) d. Sample G-112 (post-injection pair) 

  

  
e. Sample G-21 (pre-injection pair) f. Sample G-113 (post-injection pair) 

 



Enhanced Attenuation: Reactive Transport Modeling
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▪ The reverse rate constants are smaller by factor 
10 for the post-injection samples

− Effectively 10x increase in “Kd value”

▪ Kinetically controlled release with geochemical 
controls modeled using VS2DRTI* coupled to 
PhreeqcRM and compared to Column test 
results (core-scale modeling)

Data comparison from here
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* USGS software package for simulating water flow, heat transport, and reactive solute transport



3-D Reactive Transport Model Using VS2DRTI 
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▪ Simulate 3-D injections at a single well in radial 
coordinates (near-field modeling)

▪ Incorporate unsaturated and saturated zones

▪ Include local geologic model

▪ Model flow and reactive transport 

− Aqueous chemistry

− Cation exchange

− Simplified single site surface complexation 

− Mineral precipitation/dissolution

− Kinetically mediated dissolution/precipitation 

of calcite and uranium



Reactive Transport Model : HPO4
2- injection and  formation of 

Hydroxylapatite
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3-D Reactive Transport Model: Observation Pts 

Mineral Equation log K

Hydroxylapatite Ca5(OH)(PO4)3 +4H+ =  H2O + 3 HPO4
2- + 5 Ca2+ -3.0746

Andersonite Na2CaUO2(CO3)3(H2O)6 = 2Na+ + Ca2+ + UO2
2+ +3CO3

2- + 
6H2O

-37.5

Chernikovite (UO2)HPO4(H2O)4 = UO2
2+ + HPO4

2-+ 4H2O -22.73

Liebigite Ca2UO2(CO3)3(H2O)10 = 2Ca2+ + UO2
2+ + 3CO3

2- + 10H2O -36.9

= simulated injection period
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System Scale Flow and Transport Models
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300 Area Geoframework Model

Stage B

Large Domain Model



System Scale: Stage B Model
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▪ 3-D model built using eSTOMP code 
− To handle variably saturated conditions

− 600 m x 600 m x 20 m domain

▪ Vadose zone and saturated zone comprised of multiple 
Equivalent Homogeneous Media (EHM)

− Each heterogeneous hydrostratigraphic unit is treated as 
an anisotropic EHM having upscaled (effective) flow and 
transport properties

▪ Daily averaged hydrostatic pressure boundary 
conditions based on hourly record of Columbia River 
stage and water levels in monitoring wells

− Complete record from 2008 - 2018

▪ Kinetic model implemented for uranium transport 
calculations + injections simulated

▪ Hydraulic conductivity field based on model calibration 
to hydraulic heads and river water-groundwater mixing 
based on EC measurements



System Scale: Stage B Model
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Uranium Soil Distribution Zones of Variable Hydraulic Conductivity

4000 m/day
6000 m/day

Initial labile uranium mass in 
the 3-D Model was introduced 
based on the understanding 
that:

• Majority of the uranium is 
associated with <2 mm size 
fraction (sand, silt, and clay)

• Labile uranium variable (up 
to 60% of total uranium)



System Scale: Stage B Model
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Calibrated Flow Model Calibrated Tracer Model: Riverwater-GW mixing
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System Scale: Stage B Model
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Comparison to past 25 years
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System Scale: Stage B Model
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Model Prediction: Enhanced Attenuation Remedy Model Prediction: Under No Action Scenario



Large Domain Model
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Model Domain:
1710 m x 2390 m x 37 m



Large Domain Model
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Calibrated Hydraulic Conductivity Field (using PEST)



Large Domain Model: Comparison to Observations
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Large Domain Model: Predictions
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Conclusions
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▪ Evaluation of remedy performance of uranium plume in the 300 Area of the 
Hanford Site was performed using multiscale modeling

− Kinetic sorption/desorption parameters based on flow-through column tests (core scale)

− Effect of polyphosphate solution injections evaluated using a detailed reactive transport 
model near an injection well

− Focused system-scale modeling performed to evaluate Stage A & B injection impact in the 
subsurface (for evaluation of enhanced attenuation)

− Larger scale modeling performed to evaluate overall remedy performance over next two 
decades

▪ Enhanced attenuation through polyphosphate injection appears to be 
effective in reducing the mobilization of uranium (sequestration)

▪ Uranium concentrations continue to decline and by 2050 the plume area is 
predicted to be significantly reduced
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