Evaluation of Remedy Performance of the Uranium Plume in the 300 Area of the Hanford Site

S. Mehta, M. Oostrom, R. Senger, P. Allena, F. Zhang, R. Nell

INTERA Inc, Richland, Washington

November 16, 2023

Hanford Site and 300 Area

- Hanford Site was used to produce nuclear material to support the defense mission of United States from 1943-1987
- The 300 Area
 - Uranium fuel fabrication activities generated waste was discharged to surface ponds and trenches
 - Persistent uranium groundwater plumes
- Selected remedy is monitored natural attenuation with enhanced attenuation in 3-acre area (12,140 m²) of highest contamination
 - In-situ treatment with polyphosphate solutions
- Columbia River forms the Site boundary

Hanford Site 300 Area

EAA = Enhanced Attenuation Area

2012 Uranium Plume

3

Site Conceptual Model

- Columbia River stage fluctuations impacts water-table
 - Daily fluctuations and seasonal variations are important
- Vadose zone encompassing the historically high and low water table elevations is called the Periodically Rewetted Zone (PRZ)
- Highly variable contamination in vadose zone
- Majority of the uranium associated with <2 mm size fraction (sand, silt, and clay)
- Leachable (labile) uranium variable (up to 60% of total uranium)
- U(VI) exists primarily in form of
 - Precipitated phases (carbonates and phosphates)
 - Adsorbed surface complexes on phyllosilicates and iron oxides

Study Approach

Enhanced Attenuation

- In-situ uranium sequestration by injecting polyphosphate solutions
- Field monitoring (including ERT)
- Laboratory analyses
- Reactive transport modeling
- System scale flow and transport modeling
- Monitored Natural Attenuation
 - Development of large-domain model
 - Model calibration
 - Model prediction

Enhanced Attenuation: Remedy Implementation

- Stage A: smaller area (0.75 acres); November 2015; surface infiltration and 9 injection wells
- Stage B: larger area (2.25 acres); September 2018; 48 injection wells
 - Mixture of Orthophosphate (NaH₂PO₄ and KH₂PO₄) and Pyrophosphate (Na₄P₂O₇)
 - Target phosphate conc: 8,250 mg/L; Injection rate: 189 L/min (50 gal/min) for 16 hours per well
 - Total volume injected: 16 x 10⁶ Liters (4.2 x 10⁶ gallons); Phosphate mass delivered: 133,500 kg

Enhanced Attenuation: Laboratory Analyses

- Laboratory analyses performed on *pre*-treatment and *post*-treatment sediment samples collected from six co-located boreholes from approximately same depths
- Sequential extractions indicate dissolution of uranium carbonate and hydrous uranium silicates in post-treatment samples and reprecipitation as lower solubility uranium phosphate bearing mineral phases
- Total uranium that could be extracted from post-treatment samples was on average 33% lower compared to pre-treatment samples (based on sequential extraction)
- Labile uranium fraction was about 63% lower following treatment (based on 1000-hr carbonate extraction)

Enhanced Attenuation: Reactive Transport Modeling

- Uranium leaching rate estimated using singlesite kinetic rate constants
 - Due to complex assemblage of uranium bearing mineral phases the relative influence of each mineral phase is difficult to estimate
- 1-D finite-difference transport model used to fit and estimate the forward and reverse kinetic rate constants
 - Rate constants matched with other independent

estimates

f. Sample G-113 (post-injection pair)

e. Sample G-21 (pre-injection pair)

Enhanced Attenuation: Reactive Transport Modeling

- The reverse rate constants are smaller by factor 10 for the post-injection samples
 - Effectively 10x increase in "Kd value"
- Kinetically controlled release with geochemical controls modeled using VS2DRTI* coupled to PhreeqcRM and compared to Column test results (core-scale modeling)

* USGS software package for simulating water flow, heat transport, and reactive solute transport

3-D Reactive Transport Model Using VS2DRTI

- Simulate 3-D injections at a single well in radial coordinates (near-field modeling)
- Incorporate unsaturated and saturated zones
- Include local geologic model
- Model flow and reactive transport
 - Aqueous chemistry
 - Cation exchange
 - Simplified single site surface complexation
 - Mineral precipitation/dissolution
 - Kinetically mediated dissolution/precipitation of calcite and uranium

Reactive Transport Model : HPO₄²⁻ injection and formation of Hydroxylapatite

3-D Reactive Transport Model: Observation Pts

 \rightarrow

12

System Scale Flow and Transport Models

300 Area Geoframework Model

- 3-D model built using eSTOMP code
 - To handle variably saturated conditions
 - 600 m x 600 m x 20 m domain
- Vadose zone and saturated zone comprised of multiple Equivalent Homogeneous Media (EHM)
 - Each heterogeneous hydrostratigraphic unit is treated as an anisotropic EHM having upscaled (effective) flow and transport properties
- Daily averaged hydrostatic pressure boundary conditions based on hourly record of Columbia River stage and water levels in monitoring wells
 - Complete record from 2008 2018
- Kinetic model implemented for uranium transport calculations + injections simulated
- Hydraulic conductivity field based on model calibration to hydraulic heads and river water-groundwater mixing based on EC measurements

Uranium Soil Distribution

Initial labile uranium mass in the 3-D Model was introduced based on the understanding that:

- Majority of the uranium is associated with <2 mm size fraction (sand, silt, and clay)
- Labile uranium variable (up to 60% of total uranium)

Zones of Variable Hydraulic Conductivity

Calibrated Flow Model

Calibrated Tracer Model: Riverwater-GW mixing

Model Prediction: Enhanced Attenuation Remedy

Model Prediction: Under No Action Scenario

18

Large Domain Model

Large Domain Model

Large Domain Model: Comparison to Observations

105 ·0 9 05.

21

Large Domain Model: Predictions

Conclusions

 Evaluation of remedy performance of uranium plume in the 300 Area of the Hanford Site was performed using multiscale modeling

- Kinetic sorption/desorption parameters based on flow-through column tests (core scale)
- Effect of polyphosphate solution injections evaluated using a detailed reactive transport model near an injection well
- Focused system-scale modeling performed to evaluate Stage A & B injection impact in the subsurface (for evaluation of enhanced attenuation)
- Larger scale modeling performed to evaluate overall remedy performance over next two decades
- Enhanced attenuation through polyphosphate injection appears to be effective in reducing the mobilization of uranium (sequestration)
- Uranium concentrations continue to decline and by 2050 the plume area is predicted to be significantly reduced

